skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DRAMATIC EVOLUTION OF THE DISK-SHAPED SECONDARY IN THE ORION TRAPEZIUM STAR {theta}{sup 1} Ori B{sub 1} (BM Ori): MOST SATELLITE OBSERVATIONS

Journal Article · · Astrophysical Journal
; ; ; ;  [1];  [2]; ;  [3]
  1. Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States)
  2. Department of Physics and Astronomy, Bowdoin College, Brunswick, ME 04011-8488 (United States)
  3. American Association of Variable Star Observers, Cambridge, MA 02138 (United States)

The eclipsing binary {theta}{sup 1} Orionis B{sub 1}, variable star designation BM Ori, is the faintest of the four well-known Trapezium stars at the heart of the Orion Nebula. The primary is a B3 star ({approx}6 M{sub Sun }) but the nature of the secondary ({approx}2 M{sub Sun }) has long been mysterious, since the duration and shape of primary eclipse are inappropriate for any sort of ordinary star. Here we report nearly continuous photometric observations obtained with the MOST satellite over {approx}4 cycles of the 6.47 d binary period. The light curve is of unprecedented quality, revealing a deep, symmetric primary eclipse as well as a clear reflection effect and secondary eclipse. In addition, there are other small disturbances, some of which repeat at the same phase over the four cycles monitored. The shape of the primary light curve has clearly evolved significantly over the past 40 years. While its overall duration and depth have remained roughly constant, the slopes of the descent and ascent phases are significantly shallower now than in the past and its distinctive flat-bottomed ''pseudo-totality'' is much less obvious or even absent in the most recent data. We further demonstrate that the primary eclipse was detected at X-ray wavelengths during the Chandra Orion Ultradeep Project (COUP) study. The light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on orbiting the B3 primary. The dramatic change in shape over four decades is modeled as an opacity variation in a tenuous outer envelope or disk of the secondary object. We presume that the secondary is an extremely young protostar at an earlier evolutionary phase than can be commonly observed elsewhere in the Galaxy and that the opacity variations observed are related to its digestion of some accreted matter over the last 50-100 years. Indeed, this object deserves continued observational and theoretical attention as the youngest known eclipsing binary system.

OSTI ID:
22126796
Journal Information:
Astrophysical Journal, Vol. 768, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English