skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE BURST MODE OF ACCRETION IN PRIMORDIAL PROTOSTARS

Journal Article · · Astrophysical Journal
 [1]; ;  [2]
  1. Institute of Astrophysics, University of Vienna, A-1180 Vienna (Austria)
  2. Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada)

We study the formation and long-term evolution of primordial protostellar disks harbored by first stars using numerical hydrodynamics simulations in the thin-disk limit. The initial conditions are specified by pre-stellar cores with distinct mass, angular momentum, and temperature. This allows us to probe several tens of thousand years of the disk's initial evolution, during which we observe multiple episodes of fragmentation leading to the formation of gravitationally bound gaseous clumps within spiral arms. These fragments are torqued inward due to gravitational interaction with the spiral arms on timescales of 10{sup 3}-10{sup 4} yr and accreted onto the growing protostar, giving rise to accretion and luminosity bursts. The burst phenomenon is fueled by continuing accretion of material falling onto the disk from the collapsing parent core, which replenishes the mass lost by the disk due to accretion, and triggers repetitive episodes of disk fragmentation. We show that the burst phenomenon is expected to occur for a wide spectrum of initial conditions in primordial pre-stellar cores and speculate on how the intense luminosities ({approx}10{sup 7} L{sub Sun }) produced by this mechanism may have important consequences for the disk evolution and subsequent growth of the protostar.

OSTI ID:
22126744
Journal Information:
Astrophysical Journal, Vol. 768, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English