NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. IV. TESTING THE NONLINEARITY SCENARIO FOR COLOR BIMODALITY VIA HST/WFC3 u-BAND PHOTOMETRY OF M84 (NGC 4374)
Journal Article
·
· Astrophysical Journal
- Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)
- Space Telescope Science Institute (STScI), 3700 San Martin Drive, Baltimore, MD 21218 (United States)
Color distributions of globular clusters (GCs) in most massive galaxies are bimodal. Assuming linear color-to-metallicity conversions, bimodality is viewed as the presence of merely two GC subsystems with distinct metallicities, which serves as a critical backbone of various galaxy formation theories. Recent studies, however, revealed that the color-metallicity relations (CMRs) often used to derive GC metallicities (e.g., CMRs of g - z, V - I, and C - T{sub 1}) are in fact inflected. Such inflection can create bimodal color distributions if the underlying GC metallicity spread is simply broad as expected from the hierarchical merging paradigm of galaxy formation. In order to test the nonlinear-CMR scenario for GC color bimodality, the u-band photometry is proposed because the u-related CMRs (e.g., CMRs of u - g and u - z) are theoretically predicted to be least inflected and most distinctive among commonly used optical CMRs. Here, we present Hubble Space Telescope (HST)/WFC3 F336W (u-band) photometry of the GC system in M84, a giant elliptical in the Virgo galaxy cluster. Combining the u data with the existing HST ACS/WFC g and z data, we find that the u - z and u - g color distributions are different from the g - z distribution in a very systematic manner and remarkably consistent with our model predictions based on the nonlinear-CMR hypothesis. The results lend further confidence to the validity of the nonlinear-CMR scenario as an explanation for GC color bimodality. There are some GC systems showing bimodal spectroscopic metallicity, and in such systems the inflected CMRs often create stronger bimodality in the color domain.
- OSTI ID:
- 22126724
- Journal Information:
- Astrophysical Journal, Journal Name: Astrophysical Journal Journal Issue: 2 Vol. 768; ISSN ASJOAB; ISSN 0004-637X
- Country of Publication:
- United States
- Language:
- English
Similar Records
NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. II. A TEST ON THE NONLINEARITY SCENARIO FOR COLOR BIMODALITY USING THE u-BAND COLORS: THE CASE OF M87 (NGC 4486)
NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS
Nonlinear Color–Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters
Journal Article
·
Mon Dec 19 23:00:00 EST 2011
· Astrophysical Journal
·
OSTI ID:22004440
NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS
Journal Article
·
Fri May 10 00:00:00 EDT 2013
· Astrophysical Journal
·
OSTI ID:22126725
Nonlinear Color–Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters
Journal Article
·
Sat Jul 01 00:00:00 EDT 2017
· Astrophysical Journal
·
OSTI ID:22663446