skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ABSOLUTE INTEGRAL CROSS SECTIONS AND PRODUCT BRANCHING RATIOS FOR THE VIBRATIONALLY SELECTED ION-MOLECULE REACTIONS: N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v {sup +} = 0-2) + CH{sub 4}

Abstract

Absolute vibrationally selected integral cross sections ({sigma}{sub v+}'s) for the ion-molecule reaction N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v {sup +} = 0-2) + CH{sub 4} have been measured by using the newly developed vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) double-quadrupole-double-octopole ion guide apparatus. By employing a novel electric field pulsing scheme to the VUV laser PFI-PI source, we have been able to prepare reactant N{sub 2}{sup +} ions in single-vibrational quantum states with not only high intensity and high purity but also high kinetic energy resolution, allowing integral cross section measurements to be conducted in the center-of-mass kinetic energies (E{sub cm}'s) from 0.05 to 10.00 eV. Three primary product channels corresponding to the formations of CH{sub 3}{sup +}, CH{sub 2}{sup +}, and N{sub 2}H{sup +} were identified. After correcting for the secondary reactions involving CH{sub 3}{sup +} and CH{sub 2}{sup +}, we have determined the {sigma}{sub v+} values of the formation of these primary product ions, {sigma}{sub v+}(CH{sub 3}{sup +}), {sigma}{sub v+}(CH{sub 2}{sup +}), and {sigma}{sub v+}(N{sub 2}H{sup +}), and their branching ratios, [{sigma}{sub v+}(CH{sub 3}{sup +}): {sigma}{sub v+}(CH{sub 2}{sup +}): {sigma}{sub v+}(N{sub 2}H{sup +})]/{sigma}{sub v+}(CH{sub 3}{sup +} + CH{sub 2}{sup +} + N{sub 2}H{sup +}),more » v {sup +} = 0-2, in the E{sub cm} range of 0.05-10.00 eV, where {sigma}{sub v+}(CH{sub 3}{sup +} + CH{sub 2}{sup +} + N{sub 2}H{sup +}) = {sigma}{sub v+}(CH{sub 3}{sup +}) + {sigma}{sub v+}(CH{sub 2}{sup +}) + {sigma}{sub v+}(N{sub 2}H{sup +}). The branching ratios are found to be nearly independent of the v {sup +} state and E{sub cm}. Complex v {sup +}-state and E{sub cm} dependences for {sigma}{sub v+}(CH{sub 3}{sup +}), {sigma}{sub v+}(CH{sub 2}{sup +}), and {sigma}{sub v+}(N{sub 2}H{sup +}) along with vibrational inhibition for the formation of these product ions are observed. The vibrational effects on the {sigma}{sub v+} values are sufficiently large to warrant the inclusion of the vibrationally excited reactions N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v {sup +} {>=} 1) + CH{sub 4} for a more realistic modeling of the ion and neutral densities observed in the atmosphere of Titan. The cross-sectional data obtained in the present study are also useful for benchmarking theoretical calculations on ion-neutral collision dynamics.« less

Authors:
; ;
Publication Date:
OSTI Identifier:
22126585
Resource Type:
Journal Article
Journal Name:
Astrophysical Journal
Additional Journal Information:
Journal Volume: 769; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0004-637X
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BRANCHING RATIO; FAR ULTRAVIOLET RADIATION; IMPURITIES; INCLUSIONS; INTEGRAL CROSS SECTIONS; IONIZATION; ION-MOLECULE COLLISIONS; KINETIC ENERGY; LASER RADIATION; MASS; METHANE; MOLECULAR IONS; QUANTUM STATES; SATELLITE ATMOSPHERES; SECONDARY REACTIONS; SIMULATION

Citation Formats

Yuntao, Xu, Chang, Yih Chung, Zhou, Lu, and Ng, C. Y., E-mail: cyng@ucdavis.edu. ABSOLUTE INTEGRAL CROSS SECTIONS AND PRODUCT BRANCHING RATIOS FOR THE VIBRATIONALLY SELECTED ION-MOLECULE REACTIONS: N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v {sup +} = 0-2) + CH{sub 4}. United States: N. p., 2013. Web. doi:10.1088/0004-637X/769/1/72.
Yuntao, Xu, Chang, Yih Chung, Zhou, Lu, & Ng, C. Y., E-mail: cyng@ucdavis.edu. ABSOLUTE INTEGRAL CROSS SECTIONS AND PRODUCT BRANCHING RATIOS FOR THE VIBRATIONALLY SELECTED ION-MOLECULE REACTIONS: N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v {sup +} = 0-2) + CH{sub 4}. United States. https://doi.org/10.1088/0004-637X/769/1/72
Yuntao, Xu, Chang, Yih Chung, Zhou, Lu, and Ng, C. Y., E-mail: cyng@ucdavis.edu. 2013. "ABSOLUTE INTEGRAL CROSS SECTIONS AND PRODUCT BRANCHING RATIOS FOR THE VIBRATIONALLY SELECTED ION-MOLECULE REACTIONS: N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v {sup +} = 0-2) + CH{sub 4}". United States. https://doi.org/10.1088/0004-637X/769/1/72.
@article{osti_22126585,
title = {ABSOLUTE INTEGRAL CROSS SECTIONS AND PRODUCT BRANCHING RATIOS FOR THE VIBRATIONALLY SELECTED ION-MOLECULE REACTIONS: N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v {sup +} = 0-2) + CH{sub 4}},
author = {Yuntao, Xu and Chang, Yih Chung and Zhou, Lu and Ng, C. Y., E-mail: cyng@ucdavis.edu},
abstractNote = {Absolute vibrationally selected integral cross sections ({sigma}{sub v+}'s) for the ion-molecule reaction N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v {sup +} = 0-2) + CH{sub 4} have been measured by using the newly developed vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) double-quadrupole-double-octopole ion guide apparatus. By employing a novel electric field pulsing scheme to the VUV laser PFI-PI source, we have been able to prepare reactant N{sub 2}{sup +} ions in single-vibrational quantum states with not only high intensity and high purity but also high kinetic energy resolution, allowing integral cross section measurements to be conducted in the center-of-mass kinetic energies (E{sub cm}'s) from 0.05 to 10.00 eV. Three primary product channels corresponding to the formations of CH{sub 3}{sup +}, CH{sub 2}{sup +}, and N{sub 2}H{sup +} were identified. After correcting for the secondary reactions involving CH{sub 3}{sup +} and CH{sub 2}{sup +}, we have determined the {sigma}{sub v+} values of the formation of these primary product ions, {sigma}{sub v+}(CH{sub 3}{sup +}), {sigma}{sub v+}(CH{sub 2}{sup +}), and {sigma}{sub v+}(N{sub 2}H{sup +}), and their branching ratios, [{sigma}{sub v+}(CH{sub 3}{sup +}): {sigma}{sub v+}(CH{sub 2}{sup +}): {sigma}{sub v+}(N{sub 2}H{sup +})]/{sigma}{sub v+}(CH{sub 3}{sup +} + CH{sub 2}{sup +} + N{sub 2}H{sup +}), v {sup +} = 0-2, in the E{sub cm} range of 0.05-10.00 eV, where {sigma}{sub v+}(CH{sub 3}{sup +} + CH{sub 2}{sup +} + N{sub 2}H{sup +}) = {sigma}{sub v+}(CH{sub 3}{sup +}) + {sigma}{sub v+}(CH{sub 2}{sup +}) + {sigma}{sub v+}(N{sub 2}H{sup +}). The branching ratios are found to be nearly independent of the v {sup +} state and E{sub cm}. Complex v {sup +}-state and E{sub cm} dependences for {sigma}{sub v+}(CH{sub 3}{sup +}), {sigma}{sub v+}(CH{sub 2}{sup +}), and {sigma}{sub v+}(N{sub 2}H{sup +}) along with vibrational inhibition for the formation of these product ions are observed. The vibrational effects on the {sigma}{sub v+} values are sufficiently large to warrant the inclusion of the vibrationally excited reactions N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v {sup +} {>=} 1) + CH{sub 4} for a more realistic modeling of the ion and neutral densities observed in the atmosphere of Titan. The cross-sectional data obtained in the present study are also useful for benchmarking theoretical calculations on ion-neutral collision dynamics.},
doi = {10.1088/0004-637X/769/1/72},
url = {https://www.osti.gov/biblio/22126585}, journal = {Astrophysical Journal},
issn = {0004-637X},
number = 1,
volume = 769,
place = {United States},
year = {Mon May 20 00:00:00 EDT 2013},
month = {Mon May 20 00:00:00 EDT 2013}
}