skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NUCLEOSYNTHETIC CONSTRAINTS ON THE MASS OF THE HEAVIEST SUPERNOVAE

Journal Article · · Astrophysical Journal

We explore the sensitivity of nucleosynthesis in massive stars to the truncation of supernova explosions above a certain mass. It is assumed that stars of all masses contribute to nucleosynthesis by their pre-explosive winds, but above a certain limiting main sequence mass, M{sub BH}, the presupernova star becomes a black hole and ejects nothing more. The solar abundances from oxygen to atomic mass 90 are fit quite well assuming no cutoff at all, i.e., by assuming all stars up to 120 M{sub Sun} make successful supernovae. Little degradation in the fit occurs if M{sub BH} is reduced to 25 M{sub Sun }. If this limit is reduced further however, the nucleosynthesis of the s-process declines precipitously and the production of species made in the winds, e.g., carbon, becomes unacceptably large compared with elements made in the explosion, e.g., silicon and oxygen. By varying uncertain physics, especially the mass loss rate for massive stars and the rate for the {sup 22}Ne({alpha}, n){sup 25}Mg reaction rate, acceptable nucleosynthesis might still be achieved with a cutoff as low as 18 M{sub Sun }. This would require, however, a supernova frequency three times greater than the fiducial value obtained when all stars explode in order to produce the required {sup 16}O. The effects of varying M{sub BH} on the nucleosynthesis of {sup 60}Fe and {sup 26}Al, the production of helium as measured by {Delta}Y/{Delta}Z, and the average masses of compact remnants are also examined.

OSTI ID:
22126580
Journal Information:
Astrophysical Journal, Vol. 769, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English