Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4813913· OSTI ID:22122818
 [1]; ;  [2];  [1]; ;  [1];  [3]
  1. Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany)
  2. Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3 D-01620, Halle (Saale) (Germany)
  3. ZIK SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3 D-06120, Halle (Saale) (Germany)
A study of the bandgap character of compressively strained GeSn{sub 0.060-0.091}/Ge(001) quantum wells grown by molecular beam epitaxy is reported. The built-in strain in GeSn wells leads to an increased separation between L and {Gamma} conduction band minima. The prevalent indirect interband transitions in GeSn were probed by photoluminescence spectroscopy. As a result we could simulate the L-valley bowing parameter in GeSn alloys, b{sub L} = 0.80 {+-} 0.06 eV at 10 K. From this we conclude that even compressively strained GeSn/Ge(001) alloys could become direct band gap semiconductors at the Sn-fraction higher than 17.0 at. %.
OSTI ID:
22122818
Journal Information:
Applied Physics Letters, Journal Name: Applied Physics Letters Journal Issue: 3 Vol. 103; ISSN APPLAB; ISSN 0003-6951
Country of Publication:
United States
Language:
English

Similar Records

Pseudomorphic GeSn/Ge (001) heterostructures
Journal Article · Thu Nov 14 23:00:00 EST 2013 · Semiconductors · OSTI ID:22210449

Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells
Journal Article · Mon Aug 29 00:00:00 EDT 2016 · Applied Physics Letters · OSTI ID:22590489

Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge
Journal Article · Mon Sep 14 00:00:00 EDT 2015 · Journal of Applied Physics · OSTI ID:22489482