skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of reactively sputtered molybdenum oxide films for solar cell application

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4812587· OSTI ID:22122784
; ;  [1]; ;  [1]
  1. Institute of Energy Conversion, University of Delaware, 451 Wyoming Rd., Newark, Delaware 19716 (United States)

Molybdenum oxide (MoO{sub 3}) thin films were prepared via Radio Frequency (RF) sputtering at different ambient composition and post-deposition annealing. The effects on the structural, optical, and surface properties of the deposited films were investigated. The ambient oxygen concentration O{sub 2}/(O{sub 2} + Ar) was varied from 10% to 100% at 10 mTorr. Post deposition anneals were performed in Ar at 300-500 Degree-Sign C. The films were analyzed using glancing incidence x-ray diffraction (GIXRD), UV/Vis/NIR spectrophotometry, and x-ray photoelectron spectroscopy (XPS). As-deposited films have amorphous structures, independent of the oxygen partial pressure. Annealing at 300 Degree-Sign C in air resulted in crystallization of the molybdenum oxide films to the monoclinic {beta}-MoO{sub 3} phase. Samples annealed at 400 and 500 Degree-Sign C were identified as pure orthorhombic {alpha}-MoO{sub 3} phase with (020) preferred orientation. High resolution XPS studies showed the presence of Mo{sup 6+} (MoO{sub 3}) and Mo{sup 5+} (Mo{sub 4}O{sub 11}) oxidation states at the surface of as deposited and low temperature (300 Degree-Sign C) annealed films, and the Mo{sup 6+} to Mo{sup 5+} did not change much with deposition oxygen partial pressure. Annealing at 400-500 Degree-Sign C suppressed the oxygen deficiency at the surface, resulting in films with composition close to stoichiometric phases. UV/Vis/NIR spectrophotometry revealed that all films have a high optical transmittance (>80%) in the visible range, followed by a steep drop at {lambda} Almost-Equal-To 400 nm indicating a strong absorption due to band-to-band transition. Increasing the oxygen partial pressure had no significant effect on optical transmittance of the films, and the bandgaps in the range of 2.6 eV to 2.9 eV were obtained. Annealing at 300 Degree-Sign C had a negligible effect on the optical properties of the MoO{sub 3} films, but samples annealed at 400 Degree-Sign C and 500 Degree-Sign C exhibited wider bandgaps within the range of 3.1-3.4 eV.

OSTI ID:
22122784
Journal Information:
Journal of Applied Physics, Vol. 114, Issue 1; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English