skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced high harmonic generation and the phase effect in double-sided relativistic laser-foil interaction

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4796090· OSTI ID:22107711
; ; ; ; ; ; ; ; ; ; ;  [1]
  1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

High harmonic generation (HHG) from relativistic laser-foil interaction is investigated analytically and through particle-in-cell simulations. Previous work has shown that when two counter-propagating circularly polarized (CP) laser pulses interact with a thin foil, electrons can be well confined spatially to form a high density layer. The layer electrons oscillate in certain transversal direction and radiate intense high order harmonics. It is demonstrated here that there is a critical foil thickness, only below which can high harmonics be generated efficiently. Furthermore, to enhance the intensity in higher order region, the third linearly polarized (LP) short-wavelength laser pulse with much lower intensity is introduced. Analysis and simulations both show that the enhancement is determined by the relative phase {delta}{phi} between the driving CP laser pulses and LP pulse. The enhancement at high order is quite considerable and very sensitive to the relative phase {delta}{phi}, thus offering not only a way to efficiently produce HHG but also a new method to measure the phase of intense high-frequency laser pulses.

OSTI ID:
22107711
Journal Information:
Physics of Plasmas, Vol. 20, Issue 3; Other Information: (c) 2013 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English