skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coupling procedure for TRANSURANUS and KTF codes

Conference ·
OSTI ID:22105871
;  [1];  [1]
  1. Karlsruhe Inst. of Technology, Inst. for Neutron Physics and Reactor Technology INR, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

The nuclear industry aims to ensure safe and economic operation of each single fuel rod introduced in the reactor core. This goal is even more challenging nowadays due to the current strategy of going for higher burn-up (fuel cycles of 18 or 24 months) and longer residence time. In order to achieve that goal, fuel modeling is the key to predict the fuel rod behavior and lifetime under thermal and pressure loads, corrosion and irradiation. In this context, fuel performance codes, such as TRANSURANUS, are used to improve the fuel rod design. The modeling capabilities of the above mentioned tools can be significantly improved if they are coupled with a thermal-hydraulic code in order to have a better description of the flow conditions within the rod bundle. For LWR applications, a good representation of the two phase flow within the fuel assembly is necessary in order to have a best estimate calculation of the heat transfer inside the bundle. In this paper we present the coupling methodology of TRANSURANUS with KTF (Karlsruhe Two phase Flow subchannel code) as well as selected results of the coupling proof of principle. (authors)

Research Organization:
American Nuclear Society, Inc., 555 N. Kensington Avenue, La Grange Park, Illinois 60526 (United States)
OSTI ID:
22105871
Resource Relation:
Conference: PHYSOR 2012: Conference on Advances in Reactor Physics - Linking Research, Industry, and Education, Knoxville, TN (United States), 15-20 Apr 2012; Other Information: Country of input: France; 16 refs.
Country of Publication:
United States
Language:
English