Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE
- CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)
The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now. The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)
- Research Organization:
- American Nuclear Society, Inc., 555 N. Kensington Avenue, La Grange Park, Illinois 60526 (United States)
- OSTI ID:
- 22105830
- Country of Publication:
- United States
- Language:
- English
Similar Records
Experimental validation of the DARWIN2.3 package for fuel cycle applications
Experimental validation of the LWR reactivity loss with burn up: Analysis of spent fuel oscillation experiments