skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characteristics of miniature electronic brachytherapy x-ray sources based on TG-43U1 formalism using Monte Carlo simulation techniques

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.3693046· OSTI ID:22098811
; ; ;  [1]
  1. Faculty of Engineering, Science and Research Branch, Islamic Azad University, Fars, 73481-13111, Persepolis (Iran, Islamic Republic of)

Purpose: The goal of this study is to determine a method for Monte Carlo (MC) characterization of the miniature electronic brachytherapy x-ray sources (MEBXS) and to set dosimetric parameters according to TG-43U1 formalism. TG-43U1 parameters were used to get optimal designs of MEBXS. Parameters that affect the dose distribution such as anode shapes, target thickness, target angles, and electron beam source characteristics were evaluated. Optimized MEBXS designs were obtained and used to determine radial dose functions and 2D anisotropy functions in the electron energy range of 25-80 keV. Methods: Tungsten anode material was considered in two different geometries, hemispherical and conical-hemisphere. These configurations were analyzed by the 4C MC code with several different optimization techniques. The first optimization compared target thickness layers versus electron energy. These optimized thicknesses were compared with published results by Ihsan et al.[Nucl. Instrum. Methods Phys. Res. B 264, 371-377 (2007)]. The second optimization evaluated electron source characteristics by changing the cathode shapes and electron energies. Electron sources studied included; (1) point sources, (2) uniform cylinders, and (3) nonuniform cylindrical shell geometries. The third optimization was used to assess the apex angle of the conical-hemisphere target. The goal of these optimizations was to produce 2D-dose anisotropy functions closer to unity. An overall optimized MEBXS was developed from this analysis. The results obtained from this model were compared to known characteristics of HDR {sup 125}I, LDR {sup 103}Pd, and Xoft Axxent electronic brachytherapy source (XAEBS) [Med. Phys. 33, 4020-4032 (2006)]. Results: The optimized anode thicknesses as a function of electron energy is fitted by the linear equation Y ({mu}m) = 0.0459X (keV)-0.7342. The optimized electron source geometry is obtained for a disk-shaped parallel beam (uniform cylinder) with 0.9 mm radius. The TG-43 distribution is less sensitive to the shape of the conical-hemisphere anode than the hemispherical anode. However, the optimized apex angle of conical-hemisphere anode was determined to be 60 deg. For the hemispherical targets, calculated radial dose function values at a distance of 5 cm were 0.137, 0.191, 0.247, and 0.331 for 40, 50, 60, and 80 keV electrons, respectively. These values for the conical-hemisphere targets are 0.165, 0.239, 0.305, and 0.412, respectively. Calculated 2D anisotropy functions values for the hemispherical target shape were F(1 cm, 0 deg.) = 1.438 and F(1 cm, 0 deg.) = 1.465 for 30 and 80 keV electrons, respectively. The corresponding values for conical-hemisphere targets are 1.091 and 1.241, respectively. Conclusions: A method for the characterizations of MEBXS using TG-43U1 dosimetric data using the MC MCNP4C has been presented. The effects of target geometry, thicknesses, and electron source geometry have been investigated. The final choices of MEBXS design are conical-hemisphere target shapes having an apex angle of 60 deg. Tungsten material having an optimized thickness versus electron energy and a 0.9 mm radius of uniform cylinder as a cathode produces optimal electron source characteristics.

OSTI ID:
22098811
Journal Information:
Medical Physics, Vol. 39, Issue 4; Other Information: (c) 2012 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English