skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.3568926· OSTI ID:22096989
; ;  [1]
  1. Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of {sup 125}I, {sup 103}Pd, and {sup 137}Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, {Delta}, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE{sub preplan}, in a 5x5x5 cm{sup 3} volume for {sup 125}I (Oncura 6711), {sup 103}Pd (Theragenics 200), and {sup 131}Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes ({Delta}=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000)]. Results: As expected, RE{sub preplan} for our edema model indicated underdosage in the calculation volume with a clear dependence on seed and calculation point positions, and increased with increasing values of {Delta} and T. Values of RE{sub preplan} were generally larger near the ends of the virtual prostate in the RPC phantom compared with more central locations. For edema characteristics similar to the population average values previously measured at our center, i.e., {Delta}=0.2 and T=28 d, mean values of RE{sub preplan} in an axial plane located 1.5 cm from the center of the seed distribution were 8.3% for {sup 131}Cs seeds, 7.5% for {sup 103}Pd seeds, and 2.2% for {sup 125}I seeds. Maximum values of RE{sub preplan} in the same plane were about 1.5 times greater. Note that detailed results strictly apply only for loose seed implants where the seeds are fixed in tissue and move in synchrony with that tissue. Conclusions: A dose calculation method for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema was developed for which cumulative dose can be written in closed form. The method yields values for RE{sub preplan} that differ from those for spatially isotropic edema. The method is suitable for calculating pre- and postimplant dosimetry correction factors for clinical seed configurations when edema characteristics can be measured or estimated.

OSTI ID:
22096989
Journal Information:
Medical Physics, Vol. 38, Issue 4; Other Information: (c) 2011 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English