skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Study of the response of plastic scintillation detectors in small-field 6 MV photon beams by Monte Carlo simulations

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.3554644· OSTI ID:22096945
;  [1]
  1. Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

Purpose: To investigate the response of plastic scintillation detectors (PSDs) in a 6 MV photon beam of various field sizes using Monte Carlo simulations. Methods: Three PSDs were simulated: A BC-400 and a BCF-12, each attached to a plastic-core optical fiber, and a BC-400 attached to an air-core optical fiber. PSD response was calculated as the detector dose per unit water dose for field sizes ranging from 10x10 down to 0.5x0.5 cm{sup 2} for both perpendicular and parallel orientations of the detectors to an incident beam. Similar calculations were performed for a CC01 compact chamber. The off-axis dose profiles were calculated in the 0.5x0.5 cm{sup 2} photon beam and were compared to the dose profile calculated for the CC01 chamber and that calculated in water without any detector. The angular dependence of the PSDs' responses in a small photon beam was studied. Results: In the perpendicular orientation, the response of the BCF-12 PSD varied by only 0.5% as the field size decreased from 10x10 to 0.5x0.5 cm{sup 2}, while the response of BC-400 PSD attached to a plastic-core fiber varied by more than 3% at the smallest field size because of its longer sensitive region. In the parallel orientation, the response of both PSDs attached to a plastic-core fiber varied by less than 0.4% for the same range of field sizes. For the PSD attached to an air-core fiber, the response varied, at most, by 2% for both orientations. Conclusions: The responses of all the PSDs investigated in this work can have a variation of only 1%-2% irrespective of field size and orientation of the detector if the length of the sensitive region is not more than 2 mm long and the optical fiber stems are prevented from pointing directly to the incident source.

OSTI ID:
22096945
Journal Information:
Medical Physics, Vol. 38, Issue 3; Other Information: (c) 2011 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English