skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In-plane visibility of lesions using breast tomosynthesis and digital mammography

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.3488899· OSTI ID:22096804
; ; ; ; ;  [1]
  1. Medical Radiation Physics, Department of Clinical Sciences Malmoe, Lund University, Skaane University Hospital, SE-205 02 Malmoe (Sweden)

Purpose: The purpose of this work was to evaluate the visibility of simulated lesions in 2D digital mammography (DM) and breast tomosynthesis (BT) images of patients. Methods: Images of the same women were acquired on both a DM system (Mammomat Novation, Siemens Healthcare, Erlangen, Germany) and a BT prototype system adapted from the same type of DM system. Using the geometrical properties of the two systems, simulated lesions were projected and added to each DM image as well as to each BT projection image prior to 3D reconstruction. The same beam quality and approximately the same total absorbed dose to the glandular tissue were used for each breast image acquisition on the two systems. A series of four-alternative forced choice human observer experiments was conducted for each of five simulated lesion diameters: 0.2, 1, 3, 8, and 25 mm. An additional experiment was conducted for the 0.2 mm lesion in BT only at twice the dose level (BT{sub 2x}). Threshold signal was defined as the lesion signal intensity required for a detectability index (d{sup '}) of 2.5. Four medical physicists participated in all experiments. One experiment, consisting of 60 cases, was conducted per test condition (i.e., lesion size and signal combination). Results: For the smallest lesions (0.2 mm), the threshold signal for DM was 21% lower than for BT at equivalent dose levels, and BT{sub 2x} was 26% lower than DM. For the lesions larger than 1 mm, the threshold signal increased linearly (in log space) with the lesion diameter for both DM and BT, with DM requiring around twice the signal as BT. The difference in the threshold signal between BT and DM at each lesion size was statistically significant, except for the 0.2 mm lesion between BT{sub 2x} and DM. Conclusions: The results of this study indicate that low-signal lesions larger than 1.0 mm may be more visible in BT compared to DM, whereas 0.2 mm lesions may be better visualized with DM compared to BT, when compared at equal dose.

OSTI ID:
22096804
Journal Information:
Medical Physics, Vol. 37, Issue 11; Other Information: (c) 2010 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English