skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photoelectron imaging of autoionizing states of xenon: Effect of external electric fields

Journal Article · · Physical Review. A
;  [1]
  1. Argonne National Laboratory, Argonne, Illinois 60439 (United States)

Velocity map photoelectron imaging was used to study the photoelectron angular distributions of autoionizing Stark states of atomic xenon excited just below the Xe{sup +} {sup 2} P{sub 1/2}{sup o} threshold at fields ranging from 50 to 700 V/cm. Two-color, two-photon resonant, three-photon excitation via the 6p{sup '}[1/2]{sub 0} level was used to probe the region of interest. The wavelength scans show a similar evolution of structure to that observed in single-photon excitation [Ernst et al., Phys. Rev. A 37, 4172 (1988)]. The photoelectron angular distributions following autoionization of the Stark states provide information on the decay of excited states in electron fields. In the present experiments, the large autoionization width of the ({sup 2} P{sub 1/2}{sup o})nd[3/2]{sub 1}{sup o} series dominates the decay processes, and thus controls the angular distributions. However, the angular distributions of the Stark states also indicate the presence of other decay channels contributing to the decay of these states.

OSTI ID:
22093562
Journal Information:
Physical Review. A, Vol. 84, Issue 5; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1050-2947
Country of Publication:
United States
Language:
English