skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Hg{sup +}

Journal Article · · Physical Review. A
;  [1];  [2]
  1. Department of Physics and Astronomy, 217 Sharp Lab, University of Delaware, Newark, Delaware 19716 (United States)
  2. Physics Department, University of Nevada, Reno, Nevada 89557 (United States)

Excitation energies of the [Xe]4f{sup 14}5d{sup 10}ns, [Xe]4f{sup 14}5d{sup 10}np{sub j}, [Xe]4f{sup 14}5d{sup 10}nd{sub j}, [Xe]4f{sup 14}5d{sup 10}n{sup '}f{sub j}, and [Xe]4f{sup 14}5d{sup 10}n{sup '}g{sub j} states in Hg{sup +} are evaluated (n{<=}10, n{sup '}{<=}9, and [Xe]=1s{sup 2}2s{sup 2}2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10}4s{sup 2}4p{sup 6}4d{sup 10}5s{sup 2}5p{sup 6}). First-, second-, third-, and all-order Coulomb energies and first- and second-order Coulomb-Breit energies are calculated. Reduced matrix elements, oscillator strengths, and transition rates are determined for electric-dipole transitions, including the ns (n=6-11), np (n=6-10), nd (n=6-10), nf (n=5-9), and ng (n=5-9) states. Lifetime values are determined for all above-mentioned states. The ground state E1, E2, and E3 polarizabilities are evaluated. The hyperfine structure in {sup 199}Hg{sup +} and {sup 201}Hg{sup +} ions is investigated. The hyperfine A and B values are determined for the first low-lying levels up to n = 7. The quadratic Stark effect on hyperfine structure levels of {sup 199}Hg{sup +} and {sup 201}Hg{sup +} ground states is investigated. The calculated shift for the {sup 199}Hg{sup +} (F = 1, M = 0) {r_reversible} (F = 0, M = 0) transition is -0.0597(2) Hz/(kV/cm){sup 2}, in agreement with previous theoretical result -0.060(3) Hz/(kV/cm){sup 2}. These calculations provide a theoretical benchmark for comparison with experiment and theory and provide values of blackbody radiation shifts for microwave frequency standards with {sup 199}Hg{sup +} and {sup 201}Hg{sup +} ions.

OSTI ID:
22093511
Journal Information:
Physical Review. A, Vol. 84, Issue 5; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1050-2947
Country of Publication:
United States
Language:
English