skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FORMING AN O STAR VIA DISK ACCRETION?

Journal Article · · Astrophysical Journal
 [1];  [2]; ;  [3]
  1. Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)
  2. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
  3. Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

We present a study of outflow, infall, and rotation in a {approx}10{sup 5} L{sub Sun} star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of {approx}80 M{sub Sun} and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 {+-} 50 K and a mass of {approx}13 M{sub Sun }. The outflow has a gas mass of 54 M{sub Sun} and a dynamical timescale of 8 Multiplication-Sign 10{sup 3} yr. The kinematics of the HMC are probed by high-excitation CH{sub 3}OH and CH{sub 3}CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the {sup 13}CO and C{sup 18}O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass {approx}10 M{sub Sun} embedded within MM1 will develop into an O star via disk accretion and envelope infall.

OSTI ID:
22092358
Journal Information:
Astrophysical Journal, Vol. 756, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English