skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A GRAVITATIONAL REDSHIFT DETERMINATION OF THE MEAN MASS OF WHITE DWARFS: DBA AND DB STARS

Journal Article · · Astrophysical Journal
; ;  [1]
  1. Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States)

We measure apparent velocities (v{sub app}) of absorption lines for 36 white dwarfs (WDs) with helium-dominated atmospheres-16 DBAs and 20 DBs-using optical spectra taken for the European Southern Observatory SN Ia progenitor survey. We find a difference of 6.9 {+-} 6.9 km s{sup -1} in the average apparent velocity of the H{alpha} lines versus that of the He I 5876 A lines for our DBAs. This is a measure of the blueshift of this He line due to pressure effects. By using this as a correction, we extend the gravitational redshift method employed by Falcon et al. to use the apparent velocity of the He I 5876 A line and conduct the first gravitational redshift investigation of a group of WDs without visible hydrogen lines. We use biweight estimators to find an average apparent velocity, (v{sub app}){sub BI}, (and hence average gravitational redshift, (v{sub g}){sub BI}) for our WDs; from that we derive an average mass, (M){sub BI}. For the DBAs, we find (v{sub app}){sub BI} = 40.8 {+-} 4.7 km s{sup -1} and derive (M){sub BI} = 0.71{sup +0.04}{sub -0.05} M{sub Sun }. Though different from (v{sub app}) of DAs (32.57 km s{sup -1}) at the 91% confidence level and suggestive of a larger DBA mean mass than that for normal DAs derived using the same method (0.647{sup +0.013}{sub -0.014} M{sub Sun }; Falcon et al.), we do not claim this as a stringent detection. Rather, we emphasize that the difference between (v{sub app}){sub BI} of the DBAs and (v{sub app}) of normal DAs is no larger than 9.2 km s{sup -1}, at the 95% confidence level; this corresponds to roughly 0.10 M{sub Sun }. For the DBs, we find (v {sup He}{sub app}){sub BI} = 42.9 {+-} 8.49 km s{sup -1} after applying the blueshift correction and determine (M){sub BI} = 0.74{sup +0.08}{sub -0.09} M{sub Sun }. The difference between (v{sup He}{sub app}){sub BI} of the DBs and (v{sub app}) of DAs is {<=}11.5 km s{sup -1} ({approx}0.12 M{sub Sun }), at the 95% confidence level. The gravitational redshift method indicates much larger mean masses than the spectroscopic determinations of the same sample by Voss et al. Given the small sample sizes, it is possible that systematic uncertainties are skewing our results due to the potential of kinematic substructures that may not average out. We estimate this to be unlikely, but a larger sample size is necessary to rule out these systematics.

OSTI ID:
22092215
Journal Information:
Astrophysical Journal, Vol. 757, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English