skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ON DARK PEAKS AND MISSING MASS: A WEAK-LENSING MASS RECONSTRUCTION OF THE MERGING CLUSTER SYSTEM A520 ,

Journal Article · · Astrophysical Journal
 [1];  [2];  [3]; ;  [4];  [5];  [6]
  1. Department of Physics and Astronomy, Ohio University, 251B Clippinger Labs, Athens, OH 45701 (United States)
  2. NASA Goddard Space Flight Center, Code 662, 8800 Greenbelt Road, Greenbelt, MD 20706 (United States)
  3. Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States)
  4. Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States)
  5. Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)
  6. Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

Merging clusters of galaxies are unique in their power to directly probe and place limits on the self-interaction cross-section of dark matter. Detailed observations of several merging clusters have shown the intracluster gas to be displaced from the centroids of dark matter and galaxy density by ram pressure, while the latter components are spatially coincident, consistent with collisionless dark matter. This has been used to place upper limits on the dark matter particle self-interaction cross-section of order 1 cm{sup 2} g{sup -1}. The cluster A520 has been seen as a possible exception. We revisit A520 presenting new Hubble Space Telescope Advanced Camera for Surveys mosaic images and a Magellan image set. We perform a detailed weak-lensing analysis and show that the weak-lensing mass measurements and morphologies of the core galaxy-filled structures are mostly in good agreement with previous works. There is, however, one significant difference: We do not detect the previously claimed 'dark core' that contains excess mass with no significant galaxy overdensity at the location of the X-ray plasma. This peak has been suggested to be indicative of a large self-interaction cross-section for dark matter (at least {approx}5{sigma} larger than the upper limit of 0.7 cm{sup 2} g{sup -1} determined by observations of the Bullet Cluster). We find no such indication and instead find that the mass distribution of A520, after subtraction of the X-ray plasma mass, is in good agreement with the luminosity distribution of the cluster galaxies. We conclude that A520 shows no evidence to contradict the collisionless dark matter scenario.

OSTI ID:
22086508
Journal Information:
Astrophysical Journal, Vol. 758, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English