skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: EVOLUTION OF POST-IMPACT COMPANION STARS IN SN Ia REMNANTS WITHIN THE SINGLE-DEGENERATE SCENARIO

Journal Article · · Astrophysical Journal
;  [1]
  1. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

The nature of the progenitor systems of Type Ia supernovae is still uncertain. One way to distinguish between the single-degenerate scenario and double-degenerate scenario is to search for the post-impact remnant star. To examine the characteristics of the post-impact remnant star, we have carried out three-dimensional hydrodynamic simulations of supernova impacts on main-sequence-like stars. We explore the evolution of the post-impact remnants using the stellar evolution code MESA. We find that the luminosity and radius of the remnant star dramatically increase just after the impact. After the explosion, post-impact companions continue to expand on a progenitor-dependent timescale of {approx}10{sup 2.5}-10{sup 3} years before contracting. It is found that the time evolution of the remnant star is dependent not only on the amount of energy absorbed but also on the depth of the energy deposition. We examine the viability of the candidate star Tycho G as the possible remnant companion in Tycho's supernova by comparing it to the evolved post-impact remnant stars in our simulations. The closest model in our simulations has a similar effective temperature, but the luminosity and radius are twice as large. By examining the angular momentum distribution in our simulations, we find that the surface rotational speed could drop to {approx}10 km s{sup -1} if the specific angular momentum is conserved during the post-impact evolution, implying that Tycho G cannot be completely ruled out because of its low surface rotation speed.

OSTI ID:
22086350
Journal Information:
Astrophysical Journal, Vol. 760, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English