skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Creating nuclear spin entanglement using an optical degree of freedom

Journal Article · · Physical Review. A
 [1];  [1];  [1]
  1. Department of Materials, Oxford University, Oxford OX1 3PH (United Kingdom)

Molecular nanostructures are promising building blocks for future quantum technologies, provided methods of harnessing their multiple degrees of freedom can be identified and implemented. Due to low decoherence rates, nuclear spins are considered ideal candidates for storing quantum information, while optical excitations can give rise to fast and controllable interactions for information processing. A recent paper [M. Schaffry et al., Phys. Rev. Lett. 104, 200501 (2010)] proposed a method for entangling two nuclear spins through their mutual coupling to a transient optically excited electron spin. Building on the same idea, we present here an extended and much more detailed theoretical framework, showing that this method is in fact applicable to a much wider class of molecular structures than previously discussed in the original proposal.

OSTI ID:
22068676
Journal Information:
Physical Review. A, Vol. 84, Issue 3; Other Information: (c) 2011 American Institute of Physics; Country of input: Syrian Arab Republic; ISSN 1050-2947
Country of Publication:
United States
Language:
English