skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plastic deformation of submicron-sized crystals studied by in-situ Kikuchi diffraction and dislocation imaging

Journal Article · · Materials Characterization
 [1];  [2]; ;  [3]
  1. Laboratory of Advanced Materials, Dept. Material Science and Engineering, Tsinghua University, Beijing 100084 (China)
  2. Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)
  3. Danish-Chinese Center for Nanometals, Materials Science and Advanced Characterization, Department for Wind Energy, Risoe Campus, Technical University of Denmark, DK-4000 Roskilde (Denmark)

The plastic deformation of submicron-size copper single crystals in the form of pillars has been characterized during in-situ compression in the transmission electron microscope up to strains of 28-33% using a state-of-the-art holder (PI-95 PicoIndenter). The dimensions of the crystals used were approx. 500 Multiplication-Sign 250 Multiplication-Sign 200 nm{sup 3} with the compression axis oriented 1.6 Degree-Sign from [110]. Local crystallographic orientations have been determined with high accuracy using a Kikuchi diffraction method and glide of dislocations over a pillar has also been observed directly by dark field imaging. The variation in the local orientation during deformation has been followed by in-situ convergent beam electron Kikuchi diffraction. The in-situ observations have been followed up by post-deformation measurements with the samples still mounted in the electron microscope. Crystal breakup following localized deformation was observed in two of three crystals examined, and for all crystals the direction of rotation during deformation is in agreement with slip taking place on a subset of the four slip systems, with the highest Schmid factors on the (111) and (- 1-11) slip planes. A diffraction-based Burgers vector analysis confirms that the active dislocations are from slip systems with the highest Schmid factors. These results from testing of micropillars are in good agreement with the deformation behaviour previously reported for both single- and poly-crystal samples with dimensions in the millimetre range. - Highlights: Black-Right-Pointing-Pointer We performed in-situ plastic deformation of submicron-sized copper single crystals. Black-Right-Pointing-Pointer We measured in-situ and ex-situ crystal rotation and imaged dislocation activities. Black-Right-Pointing-Pointer We measured crystallographic orientations and analyzed dislocation Burgers vectors. Black-Right-Pointing-Pointer Crystals' rotation in agreement with slip of dislocations with highest Schmid factor. Black-Right-Pointing-Pointer These results in good agreement with millimeter-scale samples' deformation behavior.

OSTI ID:
22066477
Journal Information:
Materials Characterization, Vol. 70, Issue Complete; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English