skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pellet injection into H-mode ITER plasma with the presence of internal transport barriers

Journal Article · · Plasma Physics Reports
 [1];  [2]
  1. Thammasat University, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (Thailand)
  2. Thammasat University, School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology (Thailand)

The impacts of pellet injection into ITER type-1 ELMy H-mode plasma with the presence of internal transport barriers (ITBs) are investigated using self-consistent core-edge simulations of 1.5D BALDUR integrated predictive modeling code. In these simulations, the plasma core transport is predicted using a combination of a semi-empirical Mixed B/gB anomalous transport model, which can self-consistently predict the formation of ITBs, and the NCLASS neoclassical model. For simplicity, it is assumed that toroidal velocity for {omega}{sub E Multiplication-Sign B} calculation is proportional to local ion temperature. In addition, the boundary conditions are predicted using the pedestal temperature model based on magnetic and flow shear stabilization width scaling; while the density of each plasma species, including both hydrogenic and impurity species, at the boundary are assumed to be a large fraction of its line averaged density. For the pellet's behaviors in the hot plasma, the Neutral Gas Shielding (NGS) model by Milora-Foster is used. It was found that the injection of pellet could result in further improvement of fusion performance from that of the formation of ITB. However, the impact of pellet injection is quite complicated. It is also found that the pellets cannot penetrate into a deep core of the plasma. The injection of the pellet results in a formation of density peak in the region close to the plasma edge. The injection of pellet can result in an improved nuclear fusion performance depending on the properties of pellet (i.e., increase up to 5% with a speed of 1 km/s and radius of 2 mm). A sensitivity analysis is carried out to determine the impact of pellet parameters, which are: the pellet radius, the pellet velocity, and the frequency of injection. The increase in the pellet radius and frequency were found to greatly improve the performance and effectiveness of fuelling. However, changing the velocity is observed to exert small impact.

OSTI ID:
22047539
Journal Information:
Plasma Physics Reports, Vol. 37, Issue 4; Other Information: Copyright (c) 2011 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-780X
Country of Publication:
United States
Language:
English