skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Allowance for the shell structure of colliding nuclei in the fusion-fission process

Journal Article · · Physics of Atomic Nuclei
 [1];  [2];  [3];  [1]
  1. Joint Institute for Nuclear Research, Laboratory of Theoretical Physics (Russian Federation)
  2. Omsk State University (Russian Federation)
  3. National Academy of Sciences of Ukraine, Institute for Nuclear Research (Ukraine)

The motion of two nuclei toward each other in fusion-fission reactions is considered. The state of the system of interacting nuclei is specified in terms of three collective coordinates (parameters). These are the distance between the centers of mass of the nuclei and the deformation parameter for each of them (the nose-to-nose orientation of the nuclei is assumed). The evolution of collective degrees of freedom of the system is described by Langevin equations. The energies of the Coulomb and nuclear (Gross-Kalinovsky potential) interactions of nuclei are taken into account in the potential energy of the system along with the deformation energy of each nucleus with allowance for shell effects. The motion of nuclei toward each other are calculated for two reaction types: reactions involving nuclei that are deformed ({sub 42}{sup 100}Mo + {sub 42}{sup 100}Mo {yields} {sub 84}{sup 200}Po) and those that are spherical ({sub 82}{sup 208}Pb + {sub 8}{sup 18}O {yields} {sub 90}{sup 226}Th) in the ground state. It is shown that the shell structure of interacting nuclei affects not only the fusion process as a whole (fusionbarrier height and initial-reaction-energy dependence of the probability that the nuclei involved touch each other) but also the processes occurring in each nucleus individually (shape of the nuclei and their excitation energies at the point of touching).

OSTI ID:
22043891
Journal Information:
Physics of Atomic Nuclei, Vol. 74, Issue 7; Other Information: Copyright (c) 2011 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7788
Country of Publication:
United States
Language:
English