skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION

Journal Article · · Astrophysical Journal
 [1]
  1. Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany)

We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density {Sigma}, momentum injected per stellar mass formed (p{sub *}/m{sub *}), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate {Sigma}{sub SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p{sub *}/m{sub *}. The efficiency of star formation per free-fall time at the midplane density, {epsilon}{sub ff}(n{sub 0}), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure {epsilon}{sub ff}(n{sub 0}) {approx} 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For {Sigma} in (100-1000) M{sub Sun} pc{sup -2}, we find {Sigma}{sub SFR} in (0.1-4) M{sub Sun} kpc{sup -2} yr{sup -1}, generally following a {Sigma}{sub SFR} {proportional_to} {Sigma}{sup 2} relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed {Sigma}-{Sigma}{sub SFR} relation in high-density environments, provide strong evidence for the self-regulation of star formation.

OSTI ID:
22039342
Journal Information:
Astrophysical Journal, Vol. 754, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English