skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: LATERALLY PROPAGATING DETONATIONS IN THIN HELIUM LAYERS ON ACCRETING WHITE DWARFS

Journal Article · · Astrophysical Journal
 [1]; ;  [2]
  1. Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324 (United States)
  2. Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

Theoretical work has shown that intermediate mass (0.01 M{sub Sun} < M{sub He} < 0.1 M{sub Sun }) helium shells will unstably ignite on the accreting white dwarf (WD) in an AM CVn binary. For more massive (M > 0.8 M{sub Sun }) WDs, these helium shells can be dense enough (>5 Multiplication-Sign 10{sup 5} g cm{sup -3}) that the convectively burning region runs away on a timescale comparable to the sound travel time across the shell, raising the possibility for an explosive outcome rather than an Eddington limited helium novae. The nature of the explosion (i.e., deflagration or detonation) remains ambiguous, is certainly density dependent, and likely breaks spherical symmetry. In the case of detonation, this causes a laterally propagating front whose properties in these geometrically thin and low-density shells we begin to study here. Our calculations show that the radial expansion time of <0.1 s leads to incomplete helium burning, in agreement with recent work by Sim and collaborators, but that the nuclear energy released is still adequate to realize a self-sustaining laterally propagating detonation. These detonations are slower than the Chapman-Jouguet speed of 1.5 Multiplication-Sign 10{sup 9} cm s{sup -1}, but still fast enough at 0.9 Multiplication-Sign 10{sup 9} cm s{sup -1} to go around the star prior to the transit through the star of the inwardly propagating weak shock. Our simulations resolve the subsonic region behind the reaction front in the detonation wave. The two-dimensional nucleosynthesis is shown to be consistent with a truncated one-dimensional Zeldovich-von Neumann-Doering calculation at the slower detonation speed. The ashes from the lateral detonation are typically He rich, and consist of predominantly {sup 44}Ti, {sup 48}Cr, along with a small amount of {sup 52}Fe, with very little {sup 56}Ni and with significant {sup 40}Ca in carbon-enriched layers. If this helium detonation results in a Type Ia supernova, its spectral signatures would appear for the first few days after explosion.

OSTI ID:
22039189
Journal Information:
Astrophysical Journal, Vol. 755, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English