skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: IMAGING OBSERVATIONS OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARE LOOPS WITH SDO/AIA

Journal Article · · Astrophysical Journal
;  [1]; ;  [2];  [3]
  1. Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012 (China)
  2. National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)
  3. W. W. Hansen Experimental Physical Laboratory, Stanford University, Stanford, CA 94305 (United States)

Quasi-periodic pulsations (QPPs) of flaring emission with periods from a few seconds to tens of minutes have been widely detected from radio bands to {gamma}-ray emissions. However, in the past the spatial information of pulsations could not be utilized well due to the instrument limits. We report here imaging observations of the QPPs in three loop sections during a C1.7 flare with periods of P = 24 s-3 minutes by means of the extreme-ultraviolet 171 A channel of the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory. We confirm that the QPPs with the shortest period of 24 s were not of an artifact produced by the Nyquist frequency of the AIA 12 s cadence. The QPPs in the three loop sections were interconnected and closely associated with the flare. The detected perturbations propagated along the loops at speeds of 65-200 km s{sup -1}, close to those of acoustic waves in them. The loops were made up of many bright blobs arranged in alternating bright and dark changes in intensity (spatial periodical distribution) with the wavelengths 2.4-5 Mm (as if they were magnetohydrodynamic waves). Furthermore, in the time-distance diagrams, the detected perturbation wavelengths of the QPPs are estimated to be {approx}10 Mm, which evidently do not fit the above ones of the spatial periodic distributions and produce a difference of a factor of 2-4 with them. It is suggested that the short QPPs with periods P < 60 s were possibly sausage-mode oscillations and the long QPPs with periods P > 60 s were the higher (e.g., >2nd) harmonics of slow magnetoacoustic waves.

OSTI ID:
22039093
Journal Information:
Astrophysical Journal, Vol. 755, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English