skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Distinguishing defect induced intermediate frequency modes from combination modes in the Raman spectrum of single walled carbon nanotubes

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.3692070· OSTI ID:22038889
 [1];  [2];  [1]
  1. Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039 (India)
  2. Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039 (India)

Understanding of the origin of some of the intermediate frequency modes (IFMs) in the Raman spectrum of carbon nanotubes has remained controversial in the literature. In this work, through controlled introduction and elimination of defects in carbon nanotubes, we attempt to isolate the IFMs due to structural defects from that of the combination modes in single walled carbon nanotubes (SWCNTs). Our investigations on pristine and defect engineered SWCNTs using ion-irradiation, thermal annealing, and laser processing show systematic changes in the IFMs in the range 400-1200 cm{sup -1} and its manipulation with the processing parameters. In particular, we found that the intensity of IFM at 929 cm{sup -1} scale up with the increasing defect concentration, while that at 668 cm{sup -1} follows opposite behavior. New IFM peaks were observed upon the creation of a controlled amount of structural defects through 30 keV N{sup +} ion irradiation. Elimination of defects through vacuum annealing results into reduction of intensity of some IFMs identified as defect related, while the intensity of characteristic combination modes correspondingly increases. Our results show that the IFMs observed at 709, 805, 868, 926, and 1189 cm{sup -1} are due to structural defects in the SWCNTs, while those in the range 400-550 cm{sup -1} and at 669 cm{sup -1} are due to the combination modes. Our x-ray photoelectron spectroscopy analysis on ion irradiated SWCNTs supports the Raman results.

OSTI ID:
22038889
Journal Information:
Journal of Applied Physics, Vol. 111, Issue 6; Other Information: (c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English