skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SUPERNOVA 2008bk AND ITS RED SUPERGIANT PROGENITOR

Abstract

We have obtained limited photometric and spectroscopic data for supernova (SN) 2008bk in NGC 7793, primarily at {approx}> 150 days after explosion. We find that it is a Type II-Plateau (II-P) SN that most closely resembles the low-luminosity SN 1999br in NGC 4900. Given the overall similarity between the observed light curves and colors of SNe 2008bk and 1999br, we infer that the total visual extinction to SN 2008bk (A{sub V} = 0.065 mag) must be almost entirely due to the Galactic foreground, similar to what has been assumed for SN 1999br. We confirm the identification of the putative red supergiant (RSG) progenitor star of the SN in high-quality g'r'i' images we had obtained in 2007 at the Gemini-South 8 m telescope. Little ambiguity exists in this progenitor identification, qualifying it as the best example to date, next to the identification of the star Sk -69 Degree-Sign 202 as the progenitor of SN 1987A. From a combination of photometry of the Gemini images with that of archival, pre-SN, Very Large Telescope JHK{sub s} images, we derive an accurate observed spectral energy distribution (SED) for the progenitor. We find from nebular strong-intensity emission-line indices for several H II regions near themore » SN that the metallicity in the environment is likely subsolar (Z Almost-Equal-To 0.6 Z{sub Sun }). The observed SED of the star agrees quite well with synthetic SEDs obtained from model RSG atmospheres with effective temperature T{sub eff} = 3600 {+-} 50 K. We find, therefore, that the star had a bolometric luminosity with respect to the Sun of log (L{sub bol}/L{sub Sun} ) = 4.57 {+-} 0.06 and radius R{sub *} = 496 {+-} 34 R{sub Sun} at {approx}6 months prior to explosion. Comparing the progenitor's properties with theoretical massive-star evolutionary models, we conclude that the RSG progenitor had an initial mass in the range of 8-8.5 M{sub Sun }. This mass is consistent with, albeit at the low end of, the inferred range of initial masses for SN II-P progenitors. It is also consistent with the estimated upper limit on the initial mass of the progenitor of SN 1999br, and it agrees with the low initial masses found for the RSG progenitors of other low-luminosity SNe II-P.« less

Authors:
;  [1];  [2];
  1. Spitzer Science Center/Caltech, Mailcode 220-6, Pasadena, CA 91125 (United States)
  2. Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, B.C., V9E 2E7 (Canada)
Publication Date:
OSTI Identifier:
22034305
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (New York, N.Y. Online); Journal Volume: 143; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASTRONOMY; ASTROPHYSICS; BOLOMETERS; DIAGRAMS; ENERGY SPECTRA; GALAXIES; IMAGES; INDEXES; LUMINOSITY; PHOTOMETRY; PHOTON EMISSION; STAR CLUSTERS; STAR EVOLUTION; STELLAR ATMOSPHERES; SUPERNOVAE; TELESCOPES; VISIBLE RADIATION

Citation Formats

Van Dyk, Schuyler D., Elias-Rosa, Nancy, Davidge, Tim J., E-mail: vandyk@ipac.caltech.edu, E-mail: tim.davidge@nrc.ca, and and others. SUPERNOVA 2008bk AND ITS RED SUPERGIANT PROGENITOR. United States: N. p., 2012. Web. doi:10.1088/0004-6256/143/1/19.
Van Dyk, Schuyler D., Elias-Rosa, Nancy, Davidge, Tim J., E-mail: vandyk@ipac.caltech.edu, E-mail: tim.davidge@nrc.ca, & and others. SUPERNOVA 2008bk AND ITS RED SUPERGIANT PROGENITOR. United States. doi:10.1088/0004-6256/143/1/19.
Van Dyk, Schuyler D., Elias-Rosa, Nancy, Davidge, Tim J., E-mail: vandyk@ipac.caltech.edu, E-mail: tim.davidge@nrc.ca, and and others. 2012. "SUPERNOVA 2008bk AND ITS RED SUPERGIANT PROGENITOR". United States. doi:10.1088/0004-6256/143/1/19.
@article{osti_22034305,
title = {SUPERNOVA 2008bk AND ITS RED SUPERGIANT PROGENITOR},
author = {Van Dyk, Schuyler D. and Elias-Rosa, Nancy and Davidge, Tim J., E-mail: vandyk@ipac.caltech.edu, E-mail: tim.davidge@nrc.ca and and others},
abstractNote = {We have obtained limited photometric and spectroscopic data for supernova (SN) 2008bk in NGC 7793, primarily at {approx}> 150 days after explosion. We find that it is a Type II-Plateau (II-P) SN that most closely resembles the low-luminosity SN 1999br in NGC 4900. Given the overall similarity between the observed light curves and colors of SNe 2008bk and 1999br, we infer that the total visual extinction to SN 2008bk (A{sub V} = 0.065 mag) must be almost entirely due to the Galactic foreground, similar to what has been assumed for SN 1999br. We confirm the identification of the putative red supergiant (RSG) progenitor star of the SN in high-quality g'r'i' images we had obtained in 2007 at the Gemini-South 8 m telescope. Little ambiguity exists in this progenitor identification, qualifying it as the best example to date, next to the identification of the star Sk -69 Degree-Sign 202 as the progenitor of SN 1987A. From a combination of photometry of the Gemini images with that of archival, pre-SN, Very Large Telescope JHK{sub s} images, we derive an accurate observed spectral energy distribution (SED) for the progenitor. We find from nebular strong-intensity emission-line indices for several H II regions near the SN that the metallicity in the environment is likely subsolar (Z Almost-Equal-To 0.6 Z{sub Sun }). The observed SED of the star agrees quite well with synthetic SEDs obtained from model RSG atmospheres with effective temperature T{sub eff} = 3600 {+-} 50 K. We find, therefore, that the star had a bolometric luminosity with respect to the Sun of log (L{sub bol}/L{sub Sun} ) = 4.57 {+-} 0.06 and radius R{sub *} = 496 {+-} 34 R{sub Sun} at {approx}6 months prior to explosion. Comparing the progenitor's properties with theoretical massive-star evolutionary models, we conclude that the RSG progenitor had an initial mass in the range of 8-8.5 M{sub Sun }. This mass is consistent with, albeit at the low end of, the inferred range of initial masses for SN II-P progenitors. It is also consistent with the estimated upper limit on the initial mass of the progenitor of SN 1999br, and it agrees with the low initial masses found for the RSG progenitors of other low-luminosity SNe II-P.},
doi = {10.1088/0004-6256/143/1/19},
journal = {Astronomical Journal (New York, N.Y. Online)},
number = 1,
volume = 143,
place = {United States},
year = 2012,
month = 1
}
  • We present the detection of the putative progenitor of the Type IIb SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the supernova (SN) in the pre-explosion images was determined to within 23 mas. The progenitor candidate is consistent with an F8 supergiant star (logL/L{sub sun} = 4.92 {+-} 0.20 and T {sub eff} = 6000 {+-} 280 K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M{sub ZAMS} = 13 {+-} 3 M{submore » sun}. The possibility of the progenitor source being a cluster is rejected, on the basis of: (1) the source not being spatially extended, (2) the absence of excess H{alpha} emission, and (3) the poor fit to synthetic cluster spectral energy distributions (SEDs). It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest that the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax and suggest that a large amount of the progenitor's hydrogen envelope was removed before explosion. Late-time observations will reveal if the yellow supergiant or the putative companion star were responsible for this SN explosion.« less
  • A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star-with R {approx} 200 R{sub Sun }-is needed to reproduce the early light curve (LC) of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the supernova (SN) in deep pre-explosion images is the progenitor star. From the main peak of the bolometric LC and expansion velocities, we constrain the mass of the ejecta to be Almost-Equal-To 2 M{sub Sun }, the explosion energy tomore » be E = (6-10) Multiplication-Sign 10{sup 50} erg, and the {sup 56}Ni mass to be approximately 0.06 M{sub Sun }. The progenitor star was composed of a helium core of 3-4 M{sub Sun} and a thin hydrogen-rich envelope of Almost-Equal-To 0.1M{sub Sun} with a main-sequence mass estimated to be in the range of 12-15 M{sub Sun }. Our models rule out progenitors with helium-core masses larger than 8 M{sub Sun }, which correspond to M{sub ZAMS} {approx}> 25M{sub Sun }. This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.« less
  • We report on the direct detection and characterization of the probable red supergiant (RSG) progenitor of the intermediate-luminosity Type II-Plateau (II-P) supernova (SN) 2012aw in the nearby (10.0 Mpc) spiral galaxy Messier 95 (M95; NGC 3351). We have identified the star in both Hubble Space Telescope images of the host galaxy, obtained 17-18 yr prior to the explosion, and near-infrared ground-based images, obtained 6-12 yr prior to the SN. The luminous supergiant showed evidence for substantial circumstellar dust, manifested as excess line-of-sight extinction. The effective total-to-selective ratio of extinction to the star was R'{sub V} Almost-Equal-To 4.35, which is significantlymore » different from that of diffuse interstellar dust (i.e., R{sub V} = 3.1), and the total extinction to the star was therefore, on average, A{sub V} Almost-Equal-To 3.1 mag. We find that the observed spectral energy distribution for the progenitor star is consistent with an effective temperature of 3600 K (spectral type M3), and that the star therefore had a bolometric magnitude of -8.29. Through comparison with recent theoretical massive-star evolutionary tracks we can infer that the RSG progenitor had an initial mass 15 {approx}< M{sub ini}(M{sub Sun }) < 20. Interpolating by eye between the available tracks, we surmise that the star had initial mass {approx}17-18 M{sub Sun }. The circumstellar dust around the progenitor must have been destroyed in the explosion, as the visual extinction to the SN is found to be low (A{sub V} = 0.24 mag with R{sub V} = 3.1).« less
  • We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less {sup 56}Ni (≲ 0.06 M {sub ☉}) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimatedmore » to be A{sub V} = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T {sub eff} = 4250 ± 100 K and a bolometric luminosity L {sub bol} = 10{sup 4.94±0.06} L {sub ☉}. This leads to an effective radius R {sub eff} = 545 ± 65 R {sub ☉}. The star likely had an initial mass in the range of 13-17 M {sub ☉}; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.« less
  • We study the evolution of the collapsing core of a 15 M {sub ☉} blue supergiant supernova progenitor from the core bounce until 1.5 s later. We present a sample of hydrodynamic models parameterized to match the explosion energetics of SN 1987A. We find the spatial model dimensionality to be an important contributing factor in the explosion process. Compared to two-dimensional (2D) simulations, our three-dimensional (3D) models require lower neutrino luminosities to produce equally energetic explosions. We estimate that the convective engine in our models is 4% more efficient in 3D than in 2D. We propose that the greater efficiencymore » of the convective engine found in 3D simulations might be due to the larger surface-to-volume ratio of convective plumes, which aids in distributing energy deposited by neutrinos. We do not find evidence of the standing accretion shock instability or turbulence being a key factor in powering the explosion in our models. Instead, the analysis of the energy transport in the post-shock region reveals characteristics of penetrative convection. The explosion energy decreases dramatically once the resolution is inadequate to capture the morphology of convection on large scales. This shows that the role of dimensionality is secondary to correctly accounting for the basic physics of the explosion. We also analyze information provided by particle tracers embedded in the flow and find that the unbound material has relatively long residency times in 2D models, while in 3D a significant fraction of the explosion energy is carried by particles with relatively short residency times.« less