skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic structure of TiO{sub 2} rutile with oxygen vacancies: Ab initio simulations and comparison with the experiment

Journal Article · · Journal of Experimental and Theoretical Physics
;  [1]
  1. Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

The electronic structure of TiO{sub 2} rutile with oxygen vacancies, which is a promising insulator, has been analyzed. The ab initio density functional calculations, as well as the comparative analysis of the results obtained in the {sigma}-GGA spin-polarized generalized approximation and those obtained by the {sigma}-GGA + U method with allowance for Coulomb correlations of d electrons titanium atoms in the Hartree-Fock approximation for the Hubbard model, have been performed. It has been found that the effective electron mass in rutile is anisotropic and there are both light (m{sub e}{sup *} = (0.6-0.8)m{sub 0}, where m{sub 0} is the free-electron mass) and heavy (m{sub e}* > 1m{sub 0}) electrons, whereas holes in rutile are only heavy (m{sub e}* Greater-Than-Or-Slanted-Equal-To 2m{sub 0}). It has been shown that the {sigma}-GGA + U method gives a deep occupied level in the band gap and that an oxygen vacancy in rutile is an electron and hole trap.

OSTI ID:
22028147
Journal Information:
Journal of Experimental and Theoretical Physics, Vol. 112, Issue 2; Other Information: Copyright (c) 2011 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7761
Country of Publication:
United States
Language:
English