skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-induced transparency, compression, and stopping of electromagnetic pulses interacting with beams of unexcited classical oscillators

Journal Article · · Journal of Experimental and Theoretical Physics
;  [1]
  1. Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

The self-induced transparency effects that emerge when short (on the relaxation time scale) light pulses propagate in a two-level noninverted medium are well known in optics. The interaction of microwave pulses with an initially rectilinear electron beam under cyclotron resonance conditions can serve as a classical analog of the described effects. In this case, at a certain intensity of the input signal, the cyclotron absorption is replaced by self-induced transparency when the input pulse propagates almost without any change of its profile, forming a soliton whose amplitude and duration are rigidly related to its velocity. In a certain domain of parameters, this process is accompanied by significant two- or threefold compression of the initial pulse, which is of practical interest for the generation of multigigawatt picosecond microwave pulses. Since the soliton velocity lies between the unperturbed group velocity of the radiation and the translational velocity of the particles, another nontrivial effect in the case of interaction with a counterpropagating electron beam is the possibility of a significant deceleration or full stopping of the electromagnetic pulse.

OSTI ID:
22027987
Journal Information:
Journal of Experimental and Theoretical Physics, Vol. 113, Issue 5; Other Information: Copyright (c) 2011 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7761
Country of Publication:
United States
Language:
English