skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A HIGH-RESOLUTION PHOTOIONIZATION AND PHOTOELECTRON STUDY OF {sup 58}Ni USING A VACUUM ULTRAVIOLET LASER

Journal Article · · Astrophysical Journal
; ; ; ;  [1]
  1. Department of Chemistry, University of California, Davis, CA 95616 (United States)

In order to provide high-resolution spectroscopic data of nickel ({sup 58}Ni) and its cation ({sup 58}Ni{sup +}) for the assignment of vacuum ultraviolet (VUV) stellar spectra, we have obtained the photoionization efficiency (PIE) spectra of {sup 58}Ni by using a supersonically cooled laser ablation transition-metal beam source and a broadly tunable VUV laser in the range of 61,100-73,600 cm{sup -1}, covering the photoionization transitions: Ni{sup +} (3d{sup 92} D) <- Ni (3d{sup 8}4s{sup 23} D), Ni{sup +}(3d{sup 92} D) <- Ni(3d{sup 8}4s{sup 23} F), and Ni{sup +} (3d{sup 8}4s{sup 4} F) <- Ni(3d{sup 8}4s{sup 23} F). We have also measured the VUV laser pulsed-field-ionization-photoelectron (PFI-PE) spectra of {sup 58}Ni in these regions. The VUV-PFI-PE measurement has allowed the determination of a precise value of 61,619.89 {+-} 0.8 cm{sup -1} (7.6399 {+-} 0.0001 eV) for the ionization energy (IE) of {sup 58}Ni. Due to the narrow VUV laser optical bandwidth of 0.4 cm{sup -1} used in the present study, many complex autoionizing resonances exhibiting Fano line shape profiles are resolved in the PIE spectra. Four autoionizing Rydberg series originating from two-electron and one-electron excitations from the Ni(3d{sup 8}4s{sup 23} F{sub 4}) ground state to converge to the respective Ni{sup +}({sup 2} D{sub 3/2}) and Ni{sup +}({sup 4} F{sub J} ) (J = 9/2, 7/2, and 5/2) ion states are identified. The Rydberg analysis, along with VUV-PFI-PE measurements, has yielded highly precise IE values for the formation of these excited ionic states from the Ni(3d{sup 8}4s{sup 23} F{sub 4}) ground state. The IE values, relative photoionization cross sections, and autoionizing Rydberg resonances observed in the present study are relevant to astrophysics by enhancing the atomic database of iron group transition metal atoms and for understanding the Ni and Ni{sup +} contribution to the VUV opacity in the solar atmosphere.

OSTI ID:
22016327
Journal Information:
Astrophysical Journal, Vol. 747, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English