skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE HERSCHEL REFERENCE SURVEY: DUST IN EARLY-TYPE GALAXIES AND ACROSS THE HUBBLE SEQUENCE

Journal Article · · Astrophysical Journal
; ; ; ;  [1]; ;  [2];  [3];  [4]; ; ;  [5]; ;  [6];  [7];  [8];  [9];  [10];  [11];  [12] more »; « less
  1. School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom)
  2. Laboratoire d'Astrophysique de Marseille, UMR6110 CNRS, 38 rue F. Joliot-Curie, F-13388 Marseille (France)
  3. European Southern Observatory, Karl Schwarschild Str. 2, 85748 Garching bei Muenchen (Germany)
  4. School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)
  5. Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium)
  6. INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy)
  7. INAF-Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, 35122 Padova (Italy)
  8. Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom)
  9. Center for Cosmology and the Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)
  10. Universita' di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy)
  11. CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)
  12. Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

We present Herschel observations of 62 early-type galaxies (ETGs), including 39 galaxies morphologically classified as S0+S0a and 23 galaxies classified as ellipticals using SPIRE at 250, 350, and 500 {mu}m as part of the volume-limited Herschel Reference Survey (HRS). We detect dust emission in 24% of the ellipticals and 62% of the S0s. The mean temperature of the dust is (T{sub d} ) = 23.9 {+-} 0.8 K, warmer than that found for late-type galaxies in the Virgo Cluster. The mean dust mass for the entire detected early-type sample is logM{sub d} = 6.1 {+-} 0.1 M{sub Sun} with a mean dust-to-stellar-mass ratio of log(M{sub d} /M{sub *}) = -4.3 {+-} 0.1. Including the non-detections, these parameters are logM{sub d} = 5.6 {+-} 0.1 and log(M{sub d} /M{sub *}) = -5.1 {+-} 0.1, respectively. The average dust-to-stellar-mass ratio for the early-type sample is fifty times lower, with larger dispersion, than the spiral galaxies observed as part of the HRS, and there is an order-of-magnitude decline in M{sub d} /M{sub *} between the S0s and ellipticals. We use UV and optical photometry to show that virtually all the galaxies lie close to the red sequence yet the large number of detections of cool dust, the gas-to-dust ratios, and the ratios of far-infrared to radio emission all suggest that many ETGs contain a cool interstellar medium similar to that in late-type galaxies. We show that the sizes of the dust sources in S0s are much smaller than those in early-type spirals and the decrease in the dust-to-stellar-mass ratio from early-type spirals to S0s cannot simply be explained by an increase in the bulge-to-disk ratio. These results suggest that the disks in S0s contain much less dust (and presumably gas) than the disks of early-type spirals and this cannot be explained simply by current environmental effects, such as ram-pressure stripping. The wide range in the dust-to-stellar-mass ratio for ETGs and the lack of a correlation between dust mass and optical luminosity suggest that much of the dust in the ETGs detected by Herschel has been acquired as the result of interactions, although we show these are unlikely to have had a major effect on the stellar masses of the ETGs. The Herschel observations tentatively suggest that in the most massive systems, the mass of interstellar medium is unconnected to the evolution of the stellar populations in these galaxies.

OSTI ID:
22016068
Journal Information:
Astrophysical Journal, Vol. 748, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

THE EMISSION BY DUST AND STARS OF NEARBY GALAXIES IN THE HERSCHEL KINGFISH SURVEY
Journal Article · Thu Sep 01 00:00:00 EDT 2011 · Astrophysical Journal · OSTI ID:22016068

GALAXY-SCALE STAR FORMATION ON THE RED SEQUENCE: THE CONTINUED GROWTH OF S0s AND THE QUIESCENCE OF ELLIPTICALS
Journal Article · Mon Aug 20 00:00:00 EDT 2012 · Astrophysical Journal · OSTI ID:22016068

X-ray scaling relations of “core” and “coreless” E and S0 galaxies
Journal Article · Tue Oct 20 00:00:00 EDT 2015 · Astrophysical Journal · OSTI ID:22016068