skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE EFFECTS OF LINE-OF-SIGHT INTEGRATION ON MULTISTRAND CORONAL LOOP OSCILLATIONS

Journal Article · · Astrophysical Journal

Observations have shown that transverse oscillations are present in a multitude of coronal structures. It is generally assumed that these oscillations are driven by (sub)surface footpoint motions. Using fully three-dimensional MHD simulations, we show that these footpoint perturbations generate propagating kink (Alfvenic) modes which couple very efficiently into (azimuthal) Alfven waves. Using an ensemble of randomly distributed loops, driven by footpoint motions with random periods and directions, we compare the absolute energy in the numerical domain with the energy that is 'visible' when integrating along the line of sight (LOS). We show that the kinetic energy derived from the LOS Doppler velocities is only a small fraction of the actual energy provided by the footpoint motions. Additionally, the superposition of loop structures along the LOS makes it nearly impossible to identify which structure the observed oscillations are actually associated with and could impact the identification of the mode of oscillation.

OSTI ID:
22011824
Journal Information:
Astrophysical Journal, Vol. 746, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English