skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The r-PROCESS IN THE NEUTRINO-DRIVEN WIND FROM A BLACK-HOLE TORUS

Journal Article · · Astrophysical Journal
 [1];  [2]
  1. Technische Universitaet Muenchen, Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching (Germany)
  2. Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

We examine r-process nucleosynthesis in the neutrino-driven wind from the thick accretion disk (or 'torus') around a black hole. Such systems are expected as remnants of binary neutron star or neutron star-black hole mergers. We consider a simplified, analytic, time-dependent evolution model of a 3 M{sub Sun} central black hole surrounded by a neutrino emitting accretion torus with 90 km radius, which serves as basis for computing spherically symmetric neutrino-driven wind solutions. We find that ejecta with modest entropies ({approx}30 per nucleon in units of the Boltzmann constant) and moderate expansion timescales ({approx}100 ms) dominate in the mass outflow. The mass-integrated nucleosynthetic abundances are in good agreement with the solar system r-process abundance distribution if a minimal value of the electron fraction at the charged-particle freezeout, Y{sub e,min} {approx} 0.2, is achieved. In the case of Y{sub e,min} {approx} 0.3, the production of r-elements beyond A {approx} 130 does not reach to the third peak but could still be important for an explanation of the abundance signatures in r-process deficient stars in the early Galaxy. The total mass of the ejected r-process nuclei is estimated to be {approx}1 Multiplication-Sign 10{sup -3} M{sub Sun }. If our model was representative, this demands a Galactic event rate of {approx}2 Multiplication-Sign 10{sup -4} yr{sup -1} for black-hole-torus winds from merger remnants to be the dominant source of the r-process elements. Our result thus suggests that black-hole-torus winds from compact binary mergers have the potential to be a major, but probably not the dominant, production site of r-process elements.

OSTI ID:
22011658
Journal Information:
Astrophysical Journal, Vol. 746, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English