skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE RELATION BETWEEN BLACK HOLE MASS AND HOST SPHEROID STELLAR MASS OUT TO z {approx} 2

Journal Article · · Astrophysical Journal
; ;  [1];  [2]
  1. Department of Physics, University of California, Santa Barbara, CA 93106 (United States)
  2. Astronomy Program, Department of Physics and Astronomy, Seoul National University (Korea, Republic of)

We combine Hubble Space Telescope images from the Great Observatories Origins Deep Survey with archival Very Large Telescope and Keck spectra of a sample of 11 X-ray-selected broad-line active galactic nuclei in the redshift range 1 < z < 2 to study the black-hole-mass-stellar-mass relation out to a look-back time of 10 Gyr. Stellar masses of the spheroidal component (M{sub sph,*}) are derived from multi-filter surface photometry. Black hole masses (M{sub BH}) are estimated from the width of the broad Mg II emission line and the 3000 A nuclear luminosity. Comparing with a uniformly measured local sample and taking into account selection effects, we find evolution in the form M{sub BH}/M{sub sph,*}{proportional_to}(1 + z){sup 1.96{+-}}0{sup .55}, in agreement with our earlier studies based on spheroid luminosity. However, this result is more accurate because it does not require a correction for luminosity evolution and therefore avoids the related and dominant systematic uncertainty. We also measure total stellar masses (M{sub host,*}). Combining our sample with data from the literature, we find M{sub BH}/M{sub host,*}{proportional_to}(1 + z){sup 1.15{+-}0.15}, consistent with the hypothesis that black holes (in the range M{sub BH} {approx} 10{sup 8-9} M{sub Sun }) pre-date the formation of their host galaxies. Roughly, one-third of our objects reside in spiral galaxies; none of the host galaxies reveal signs of interaction or major merger activity. Combined with the slower evolution in host stellar masses compared to spheroid stellar masses, our results indicate that secular evolution or minor mergers play a non-negligible role in growing both BHs and spheroids.

OSTI ID:
22004609
Journal Information:
Astrophysical Journal, Vol. 742, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English