Comparing the greenhouse gas emissions from three alternative waste combustion concepts
- VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland)
- Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.
- OSTI ID:
- 21612944
- Journal Information:
- Waste Management, Journal Name: Waste Management Journal Issue: 3 Vol. 32; ISSN WAMAE2; ISSN 0956-053X
- Country of Publication:
- United States
- Language:
- English
Similar Records
Sustainable waste management in Africa through CDM projects
GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012
Related Subjects
54 ENVIRONMENTAL SCIENCES
AIR POLLUTION ABATEMENT
CARBON COMPOUNDS
CARBON DIOXIDE
CARBON OXIDES
CARBONACEOUS MATERIALS
CHALCOGENIDES
CHEMICAL REACTIONS
CLIMATIC CHANGE
COAL
COAL MINES
COMBUSTION
CONVERSION
DISTILLATES
ELECTRICITY
ENERGY CONVERSION
ENERGY MODELS
ENERGY SOURCES
ENERGY SYSTEMS
FLUIDIZED BEDS
FLUIDS
FOSSIL FUELS
FUEL GAS
FUEL OILS
FUELS
GAS FUELS
GAS OILS
GASES
GREENHOUSE EFFECT
GREENHOUSE GASES
HEAT PRODUCTION
INCINERATORS
LIQUID FUELS
MANAGEMENT
MATERIALS
MINES
NATURAL GAS
NITROGEN COMPOUNDS
NITROGEN OXIDES
NITROUS OXIDE
OXIDATION
OXIDES
OXYGEN COMPOUNDS
PETROLEUM
PETROLEUM DISTILLATES
PETROLEUM FRACTIONS
PETROLEUM PRODUCTS
POLLUTION ABATEMENT
POWER GENERATION
SOLID WASTES
THERMOCHEMICAL PROCESSES
UNDERGROUND FACILITIES
WASTE MANAGEMENT
WASTE TRANSPORTATION
WASTES