Improving dynamical lattice QCD simulations through integrator tuning using Poisson brackets and a force-gradient integrator
Journal Article
·
· Physical Review. D, Particles Fields
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States)
- Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606 (United States)
- Tait Institute and SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom)
- Centro de Fisica Computacional, Universidade de Coimbra (Portugal)
We show how the integrators used for the molecular dynamics step of the Hybrid Monte Carlo algorithm can be further improved. These integrators not only approximately conserve some Hamiltonian H but conserve exactly a nearby shadow Hamiltonian H-tilde. This property allows for a new tuning method of the molecular dynamics integrator and also allows for a new class of integrators (force-gradient integrators) which is expected to reduce significantly the computational cost of future large-scale gauge field ensemble generation.
- OSTI ID:
- 21607738
- Journal Information:
- Physical Review. D, Particles Fields, Journal Name: Physical Review. D, Particles Fields Journal Issue: 7 Vol. 84; ISSN PRVDAQ; ISSN 0556-2821
- Country of Publication:
- United States
- Language:
- English
Similar Records
Improving dynamical lattice QCD simulations through integrator tuning using Poisson brackets and a force-gradient integrator
Improving dynamical lattice QCD simulations through integrator tuning using Poisson brackets and a force-gradient integrator
Poisson brackets for fluids and plasmas
Journal Article
·
Sat Oct 01 00:00:00 EDT 2011
· Phys.Rev. D
·
OSTI ID:1114476
Improving dynamical lattice QCD simulations through integrator tuning using Poisson brackets and a force-gradient integrator
Journal Article
·
Thu Oct 13 20:00:00 EDT 2011
· Physical Review D
·
OSTI ID:1100966
Poisson brackets for fluids and plasmas
Journal Article
·
Tue Jul 20 00:00:00 EDT 1982
· AIP Conf. Proc.; (United States)
·
OSTI ID:7037643
Related Subjects
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
ALGORITHMS
CALCULATION METHODS
CONSTRUCTIVE FIELD THEORY
FIELD THEORIES
GAUGE INVARIANCE
HAMILTONIANS
INVARIANCE PRINCIPLES
LATTICE FIELD THEORY
MATHEMATICAL LOGIC
MATHEMATICAL OPERATORS
MOLECULAR DYNAMICS METHOD
MONTE CARLO METHOD
QUANTUM CHROMODYNAMICS
QUANTUM FIELD THEORY
QUANTUM OPERATORS
SIMULATION
ALGORITHMS
CALCULATION METHODS
CONSTRUCTIVE FIELD THEORY
FIELD THEORIES
GAUGE INVARIANCE
HAMILTONIANS
INVARIANCE PRINCIPLES
LATTICE FIELD THEORY
MATHEMATICAL LOGIC
MATHEMATICAL OPERATORS
MOLECULAR DYNAMICS METHOD
MONTE CARLO METHOD
QUANTUM CHROMODYNAMICS
QUANTUM FIELD THEORY
QUANTUM OPERATORS
SIMULATION