skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The anti-cancer agent guttiferone-A permeabilizes mitochondrial membrane: Ensuing energetic and oxidative stress implications

Journal Article · · Toxicology and Applied Pharmacology
 [1];  [2];  [3]; ;  [2]; ;  [4]; ;  [2]
  1. Centro para las Investigaciones y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600, Ciudad Habana (Cuba)
  2. Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP (Brazil)
  3. Departamento de Quimica, Instituto de Farmacia y Alimentos, Universidad de La Habana, ave. 23 21425 e/214 and 222, La Coronela, La Lisa, CP 13600, Ciudad Habana (Cuba)
  4. Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP (Brazil)

Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 {mu}M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca{sup 2+} efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP{sup +} transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. - Graphical abstract: Guttiferone-A permeabilizes mitochondrial membrane and induces cancer cell death Display Omitted Highlights: > We addressed the involvement of mitochondria in guttiferone (GA) toxicity toward cancer cells. > GA promoted membrane permeabilization, membrane potential dissipation, NAD(P)H depletion, ROS accumulation and ATP depletion. > These actions could be implicated in the well-documented anti-cancer property of GA/structure related compounds.

OSTI ID:
21587772
Journal Information:
Toxicology and Applied Pharmacology, Vol. 253, Issue 3; Other Information: DOI: 10.1016/j.taap.2011.04.011; PII: S0041-008X(11)00150-5; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English