Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Syntheses, crystal structures and properties of two unusual pillared-layer 3d-4f Ln-Cu heterometallic coordination polymers

Journal Article · · Journal of Solid State Chemistry
OSTI ID:21580266
 [1]
  1. College of Materials Science and Engineering, Key Laboratory for Functional Materials of Fujian Higher Education, Huaqiao University, Xiamen, Fujian 361021 (China)

Two unusual pillared-layer 3d-4f Ln-Cu heterometallic coordination polymers, {l_brace}[Ln{sub 2}Cu{sub 5}Br{sub 4}(IN){sub 7}(H{sub 2}O){sub 6}].H{sub 2}O{r_brace}{sub n} (Ln=Eu (1) and Gd (2), HIN=isonicotinic acid), have been synthesized under hydrothermal conditions, and characterized by elemental analysis, IR, thermal analysis and single-crystal X-ray diffraction. The structure determination reveals that 1 and 2 are isostructural and feature a novel three-dimensional pillared-layer hetrometallic structure built upon the linkages of one-dimensional (1D) linear Ln-carboxylate chains, zero-dimensional (0D) Ln-carboxylate Ln{sub 2}(IN){sub 8} dimers, rare 1D zigzag [Cu{sub 5}Br{sub 4}]{sub n} inorganic chains and IN{sup -} pillars. In both 3D structures, there are Ln-carboxylate layers resulted from the connections of 1D Ln-carboxylate chains and 0D Ln{sub 2}(IN){sub 8} dimers through O-H...O hydrogen bondings. The luminescent properties of 1 have been investigated. The magnetic properties of 1 and 2 have also been studied. - Graphical abstract: Two unusual pillared-layer Eu (Gd)-Cu heterometallic coordination polymers have been hydrothermally synthesized. The luminescent properties of Eu-Cu compound and magnetic properties of both compounds are investigated. Highlights: > Two unusual 3D pillared-layer Eu (Gd)-Cu heterometallic coordination polymers have been synthesized. > 1D and 0D Ln-carboxylate motifs construct layers by O-H...O hydrogen bondings. > In both the structures, there are rare 1D zigzag Cu/Br inorganic chains. > Luminescent properties of Eu-Cu compound and magnetic properties of both the compounds are investigated.

OSTI ID:
21580266
Journal Information:
Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Journal Issue: 9 Vol. 184; ISSN 0022-4596; ISSN JSSCBI
Country of Publication:
United States
Language:
English