skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

Journal Article · · Journal of Solid State Chemistry
OSTI ID:21580208
 [1];  [1]
  1. Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N{sub 2} adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f{sub t}=kt{sup n} was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: > Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. > Loading and release profiles of aspirin in modified BMMs and MCM-41. > Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

OSTI ID:
21580208
Journal Information:
Journal of Solid State Chemistry, Vol. 184, Issue 8; Other Information: DOI: 10.1016/j.jssc.2011.05.052; PII: S0022-4596(11)00301-X; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0022-4596
Country of Publication:
United States
Language:
English