skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design of highly ordered Ag-SrTiO{sub 3} nanotube arrays for photocatalytic degradation of methyl orange

Journal Article · · Journal of Solid State Chemistry
 [1]
  1. Key Laboratory of Design and Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025 (China)

Ag-SrTiO{sub 3} nanotube arrays were successfully prepared for the degradation of methyl orange (MO) under ultraviolet irradiation. In order to form highly ordered SrTiO{sub 3} nanotube arrays, the preparation of TiO{sub 2} nanotube arrays by anodic oxidation of titanium foil in different electrolytes was investigated. The selected organic solvents in electrolytes include glycerol, dimethyl sulfoxide and glycol. The results indicate that the morphology of TiO{sub 2} nanotube arrays prepared in glycol containing ammonium fluoride electrolyte is more regular. Then SrTiO{sub 3} nanotube arrays were synthesized by a hydrothermal method using TiO{sub 2} nanotube arrays as the precursor. In order to further improve the photocatalytic activity of SrTiO{sub 3} nanotube arrays, Ag nanoparticles were loaded on SrTiO{sub 3} nanotube arrays by two sets of experiments. The loaded Ag results in an enhancement of photocatalytic activity of SrTiO{sub 3} nanotube arrays. Moreover, the effect of pH on the photocatalytic degradation of MO was also studied. - Graphical abstract: Ag-SrTiO{sub 3} nanotube arrays were successfully prepared. The photocatalytic activity was evaluated by degradation of methyl orange under ultraviolet irradiation. Highlights: > TiO{sub 2} nanotube arrays prepared in glycol+NH{sub 4}F electrolyte are more regular. > Highly ordered Ag-SrTiO{sub 3} nanotube arrays were successfully synthesized. > Ag loading could enhance the photocatalytic activity of SrTiO{sub 3} nanotube arrays. > Ag-SrTiO{sub 3} nanotube arrays show excellent catalytic activity at a low pH value.

OSTI ID:
21580205
Journal Information:
Journal of Solid State Chemistry, Vol. 184, Issue 8; Other Information: DOI: 10.1016/j.jssc.2011.05.037; PII: S0022-4596(11)00286-6; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0022-4596
Country of Publication:
United States
Language:
English