skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE 2006-2007 ACTIVE PHASE OF ANOMALOUS X-RAY PULSAR 4U 0142+61: RADIATIVE AND TIMING CHANGES, BURSTS, AND BURST SPECTRAL FEATURES

Journal Article · · Astrophysical Journal
 [1]; ;  [2]
  1. NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771 (United States)
  2. Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada)

After at least six years of quiescence, anomalous X-ray pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in >11 yr of Rossi X-Ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from (0.4-1.8) x 10{sup 3} s. The first five burst spectra are well modeled by blackbodies, with temperatures kT {approx} 2-9 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase, the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9 {+-} 0.4) x 10{sup -7} Hz, which recovered with a decay time of 17 {+-} 2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere.

OSTI ID:
21578207
Journal Information:
Astrophysical Journal, Vol. 736, Issue 2; Other Information: DOI: 10.1088/0004-637X/736/2/138; ISSN 0004-637X
Country of Publication:
United States
Language:
English