Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Pulsed semiconductor lasers with higher optical strength of cavity output mirrors

Journal Article · · Semiconductors

Asymmetric heterostructures with an ultrathick waveguide based on an AlGaAs/GaAs alloy system that allow lasing at a wavelength of 905 nm have been developed and fabricated by hydride metalorganic vapor-phase epitaxy. The internal optical loss and internal quantum efficiency of semiconductor lasers based on such structures were 0.7 cm{sup -1} and 97%, respectively. It is shown that the highest output optical power of laser diodes with antireflecting (SiO{sub 2}) and reflecting (Si/SiO{sub 2}) coatings deposited on untreated Fabry-Perot cavity facets obtained by cleaving in an oxygen atmosphere reached 67 W in the pulsed mode and is limited by mirror damage. Treatment of Fabry-Perot cavity facets by etching in argon plasma and the formation of coatings with passivating and oxygen-blocking GaN and Si{sub 3}N{sub 4} layers allowed an increase in the maximum output optical power to 120 W. Mirror damage was not observed at the attained output optical power.

OSTI ID:
21562275
Journal Information:
Semiconductors, Journal Name: Semiconductors Journal Issue: 6 Vol. 44; ISSN SMICES; ISSN 1063-7826
Country of Publication:
United States
Language:
English