skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Predictive modelling for EAST divertor operation

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.3596717· OSTI ID:21546960
 [1]
  1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

The predictive modelling study of the divertor operation in EAST tokamak [B. Wan et al., Nucl. Fusion 49, 104011 (2009)] with double null (DN) configuration is carried out by using the two-dimensional edge plasma code B2.5-SOLPS5.0 [D. P. Coster, X. Bonnin et al., J. Nucl. Mater. 337-339, 366 (2005)]. The modelling study includes the particle and power balance in the scrape-off-layer (SOL), the operation parameters of plasma density, temperature and plasma heat fluxes at the separatrix, the target plates and the wall, and the effect of the gas puffing, drifts, and vertical target plate on the divertor operation. The fluid model for the edge plasma is applied using the real magnetohydrodynamic (MHD) equilibrium from the MHD equilibrium code EFIT [L. L. Lao et al., Nucl. Fusion 25, 1611 (1985)] and the real divertor geometry in the device. Before EAST tokamak starts its experimental programme of divertor operation, the modelling plays an important role in the design of its experimental programme and the optimization of the divertor operation parameters. Based on the modelling results, EAST divertor can operate over a large wide of plasma parameters with different regimes. For a heating power of 8 MW and an edge density at core-SOL interface N{sub edge} = 0.8 x 10{sup 19}1/m{sup 3} and N{sub edge} = 1.3 x 10{sup 19}1/m{sup 3}, the EAST divertor begins access to the high recycling operation regime at the outer and inner target plates, respectively, where the plasma temperature and the heat fluxes at the target plates decrease. The gas puffing can increase the plasma density at the separatrix and trigger the transition from the high recycling operation into detachment at the target plates. When E x B and B x {nabla}B drifts are taken into account, the asymmetry of plasma parameters and heat fluxes between up-down SOLs can be found. The vertical target plate in EAST divertor can reduce the peak values of heat fluxes at the target plate and enables detachment at lower plasma density. The divertor with the vertical target plate can be considered as a possible option for EAST divertor upgrade in the future.

OSTI ID:
21546960
Journal Information:
Physics of Plasmas, Vol. 18, Issue 6; Other Information: DOI: 10.1063/1.3596717; (c) 2011 American Institute of Physics; ISSN 1070-664X
Country of Publication:
United States
Language:
English