Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Quasiclassical asymptotics and coherent states for bounded discrete spectra

Journal Article · · Journal of Mathematical Physics
DOI:https://doi.org/10.1063/1.3503775· OSTI ID:21501208
 [1];  [2]; ;  [3];  [4];  [2]
  1. Nicolaus Copernicus University, Institute of Physics, ul. Grudziadzka 5/7, PL 87-100 Torun (Poland)
  2. Laboratoire de Physique Theorique de la Matiere Condensee, Universite Pierre et Marie Curie, CNRS UMR 7600, Tour 13 - 5ieme et., B.C. 121, 4 pl. Jussieu, F 75252 Paris Cedex 05 (France)
  3. H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Eliasza-Radzikowskiego 152, PL 31342 Krakow (Poland)
  4. Universite Paris XIII, LIPN, Institut Galilee, CNRS UMR 7030, 99 Av. J.-B. Clement, F 93430 Villetaneuse (France)
We consider discrete spectra of bound states for nonrelativistic motion in attractive potentials V{sub {sigma}}(x)=-|V{sub 0}| |x|{sup -}{sigma}, 0<{sigma}{<=}2. For these potentials the quasiclassical approximation for n{yields}{infinity} predicts quantized energy levels e{sub {sigma}}(n) of a bounded spectrum varying as e{sub {sigma}}(n){approx}-n{sup -}2{sigma}/(2-{sigma}). We construct collective quantum states using the set of wavefunctions of the discrete spectrum assuming this asymptotic behavior. We give examples of states that are normalizable and satisfy the resolution of unity, using explicit positive functions. These are coherent states in the sense of Klauder and their completeness is achieved via exact solutions of Hausdorff moment problems, obtained by combining Laplace and Mellin transform methods. For {sigma} in the range 0 < {sigma}{<=} 2/3 we present exact implementations of such states for the parametrization {sigma}= 2(k-l)/(3k-l) with k and l positive integers satisfying k>l.
OSTI ID:
21501208
Journal Information:
Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 12 Vol. 51; ISSN JMAPAQ; ISSN 0022-2488
Country of Publication:
United States
Language:
English