Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Two inorganic-organic hybrid materials based on polyoxometalate anions and methylene blue: Preparations, crystal structures and properties

Journal Article · · Journal of Solid State Chemistry
OSTI ID:21496542
; ; ; ;  [1]; ;  [2]
  1. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Department of Chemistry, Northwest University, Xi'an 710069 (China)
  2. Department of Chemistry, Yanan University, Yan'an 716000 (China)

Two novel inorganic-organic hybrid materials based on an organic dye cation methylene blue (MB) and Lindqvist-type POM polyanions, [C{sub 22}H{sub 18}N{sub 3}S]{sub 2}Mo{sub 6}O{sub 19} 2DMF (1) and [C{sub 22}H{sub 18}N{sub 3}S]{sub 2}W{sub 6}O{sub 19} 2DMF (2) were synthesized under ambient conditions and characterized by CV, IR spectroscopy, solid diffuse reflectance spectrum, UV-vis spectra in DMF solution, luminescent spectrum and single crystal X-ray diffraction. Crystallographic data reveal that compounds 1 and 2 are isostructural and both crystallize in the triclinic space group P1-bar . Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong {pi}...{pi} stacking interactions between dimeric MB cations and near distance interactions among organic dye cations, Lindqvist-type POM polyanions and DMF molecules. The solid diffuse reflectance spectra and UV-vis spectra in DMF solution appear new absorption bands ascribed to the charge-transfer transition between the cationic MB donor and the POM acceptors. Studies of the photoluminescent properties show that the formation of 1 and 2 lead to the fluorescence quenching of starting materials. -- Graphical abstract: Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong {pi}...{pi} stacking interactions between dimeric MB cations. Display Omitted

OSTI ID:
21496542
Journal Information:
Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Journal Issue: 12 Vol. 183; ISSN 0022-4596; ISSN JSSCBI
Country of Publication:
United States
Language:
English