Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Qiang-Dong proper quantization rule and its applications to exactly solvable quantum systems

Journal Article · · Journal of Mathematical Physics
DOI:https://doi.org/10.1063/1.3466802· OSTI ID:21476526
 [1];  [2];  [3]
  1. Instituto Politecnico Nacional, ESIME-Culhuacan Av., Santa Ana 1000, Distrito Federal 04430 (Mexico)
  2. Department of Physics, East China University of Science and Technology, Shanghai 200237 (China)
  3. Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Edificio 9, Unidad Profesional Adolfo Lopez Mateos, Mexico, Distrito Federal 07738 (Mexico)
We propose proper quantization rule, x{sub A}(x{sub B})k(x)dx-x{sub 0A}(x{sub 0B})k{sub 0}(x)dx=n{pi}, where k(x)={radical}(2M[E-V(x)])/({h_bar}/2{pi}). The x{sub A} and x{sub B} are two turning points determined by E=V(x), and n is the number of the nodes of wave function {psi}(x). We carry out the exact solutions of solvable quantum systems by this rule and find that the energy spectra of solvable systems can be determined only from its ground state energy. The previous complicated and tedious integral calculations involved in exact quantization rule are greatly simplified. The beauty and simplicity of the rule come from its meaning--whenever the number of the nodes of {phi}(x) or the number of the nodes of the wave function {psi}(x) increases by 1, the momentum integral x{sub A}(x{sub B})k(x)dx will increase by {pi}. We apply this proper quantization rule to carry out solvable quantum systems such as the one-dimensional harmonic oscillator, the Morse potential and its generalization, the Hulthen potential, the Scarf II potential, the asymmetric trigonometric Rosen-Morse potential, the Poeschl-Teller type potentials, the Rosen-Morse potential, the Eckart potential, the harmonic oscillator in three dimensions, the hydrogen atom, and the Manning-Rosen potential in D dimensions.
OSTI ID:
21476526
Journal Information:
Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 8 Vol. 51; ISSN JMAPAQ; ISSN 0022-2488
Country of Publication:
United States
Language:
English

Similar Records

Analytic computation of energy levels in quasilinear approximation
Journal Article · Fri May 06 00:00:00 EDT 2005 · AIP Conference Proceedings · OSTI ID:20722292

Comparison of quasilinear and WKB approximations
Journal Article · Thu Dec 14 23:00:00 EST 2006 · Annals of Physics (New York) · OSTI ID:20845949

Position-momentum uncertainty products for exactly solvable potentials
Journal Article · Sat Sep 01 00:00:00 EDT 1979 · Phys. Rev., A; (United States) · OSTI ID:5972576