skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ring-type electric current sensor based on ring-shaped magnetoelectric laminate of epoxy-bonded Tb{sub 0.3}Dy{sub 0.7}Fe{sub 1.92} short-fiber/NdFeB magnet magnetostrictive composite and Pb(Zr, Ti)O{sub 3} piezoelectric ceramic

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.3360349· OSTI ID:21476220
; ; ;  [1]
  1. Department of Electrical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

A ring-type electric current sensor operated in vortex magnetic field detection mode is developed based on a ring-shaped magnetoelectric laminate of an axially polarized Pb(Zr, Ti)O{sub 3} (PZT) piezoelectric ceramic ring bonded between two circumferentially magnetized epoxy-bonded Tb{sub 0.3}Dy{sub 0.7}Fe{sub 1.92} (Terfenol-D) short-fiber/NdFeB magnet magnetostrictive composite rings. The electric current sensitivity of the sensor was evaluated, both theoretically and experimentally. The sensor showed a high nonresonance sensitivity of {approx}12.6 mV/A over a flat frequency range of 1 Hz-30 kHz and a large resonance sensitivity of 92.2 mV/A at the fundamental shape resonance of 67 kHz, besides an excellent linear relationship between the input electric current and the output magnetoelectrically induced voltage. The power-free, bias-free, high-sensitive, and wide-bandwidth natures of the sensor make it great potential for real-time condition monitoring of engineering systems having electric current-carrying cables or conductors.

OSTI ID:
21476220
Journal Information:
Journal of Applied Physics, Vol. 107, Issue 9; Conference: 11. joint MMM-Intermag conference, Washington, DC (United States), 18-22 Jan 2010; Other Information: DOI: 10.1063/1.3360349; (c) 2010 American Institute of Physics; ISSN 0021-8979
Country of Publication:
United States
Language:
English