Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Anisotropic SmCo{sub 5} nanoflakes by surfactant-assisted high energy ball milling

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.3339775· OSTI ID:21476207
; ; ;  [1]; ;  [2]
  1. Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)
  2. Electron Energy Corporation, 924 Links Ave., Landisville, Pennsylvania 17538 (United States)

Crystallographically anisotropic SmCo{sub 5} nanoflakes were fabricated directly by one-step surfactant-assisted high energy ball milling (HEBM) of Sm{sub 17}Co{sub 83} ingot powders for 5 h in heptane and oleic acid (OA) without preprocessing or further annealing. The SmCo{sub 5} nanoflakes have a strong [001] out-of-plane texture. The thickness of nanoflakes is in the range of 8-80 nm while their length is 0.5-8 {mu}m. The surfactant OA plays an important role in the formation of SmCo{sub 5} nanoflakes. HEBM of SmCo{sub 5} ingots in heptane without OA resulted in the formation of magnetically isotropic more or less equiaxed SmCo{sub 5} particles with a size of 2-30 {mu}m. Closely packed 'kebablike' SmCo{sub 5} nanoflakes were formed by HEBM in heptane with 15 wt % OA. HEBM in 150 wt % OA led to well-separated nanoflakes instead of the closely packed kebablike nanostructure. This resulted in the enhanced [001] out-of-plane texture. In-plane transmission electron microscope examination showed that the SmCo{sub 5} nanoflakes were composed of grains with sizes in the range of 4-8 nm. Coercivities of about 18.0 kOe were obtained for the anisotropic SmCo{sub 5} nanoflakes.

OSTI ID:
21476207
Journal Information:
Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 9 Vol. 107; ISSN JAPIAU; ISSN 0021-8979
Country of Publication:
United States
Language:
English